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Warning

This tutorial is in construction. The current version only covers a very small fraction of the
NeAT tools. For the tools not covered yet by the tutorial, theDEMO buttons already give
some hints about typical cases of utilization. We intend to develop further those tutorials very
soon.
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1 Introduction

Since a few years, large scale biological studies produced huge amounts of data about net-
works of molecular interactions (protein interactions, gene regulation, metabolic reactions,
signal transduction). The integration of these data sets can be combined to acquire a global
view of the pieces that, altogether, contribute to the complexity of biological processes. High-
throughput data is however notoriously noisy and incomplete, and it is important to evaluate
the quality of the different pieces of information that are taken in consideration for building
higher views of biological networks.

An important effort will be required to extract reliable information from the ever-increasing
ocean of high-throughput data. This will require the utilization of powerful tools that enable
us to apply statistical analysis on large graphs. For this purpose, we developed theNetwork
Analysis Tools(NeAT ), as set of tools performing basic operations on networks and clusters.

The tools can be used in three ways:

1. Web server interface

http://rsat.ulb.ac.be/neat/

The Web interface gives a convenient and intuitive access tothe tools, and allows you
to bring your data sets through some typical analysis work flows in order to extract the
best of it.

2. Stand-alone application

http://rsat.ulb.ac.be/rsat/distrib/

Most of the tools are freely available to academic users, according to a licence for non-
commercial and non-military usage.

The license covers both the Regulatory Sequence Analysis Tools (RSAT ) and the Net-
work Analysis Tools (NeAT ). It can be downloaded from the RSAT Web site.

3. Web services

In addition, people having computer skills can also use be same tools via a Web services
interface, in order to integrate them in automatic work-flows. To obtain information on
the Web services, connect theNeATweb server, and in the left menu, selectInforma-
tion - Web services.
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2 Network visualization and format
conversion

2.1 Introduction

2.1.1 Network visualization

To help the scientists apprehending their interest network, it is sometimes very useful to visu-
alize them. Networks are generally represented by a set of dots (or of boxes) which represents
its nodes that are linked via lines (the edges) or arows (arcsin the case of directed graphs).
The nodes and the edges may present a label and / or a weight. The node label is generally
indicated in the node box and the edge label is often placed onthe line.

NeAT contains some facilities to represent networks. It contains its own visualization soft-
ware (display-graph) that will be described in the following. Moreover, it allows the conver-
sion of the graph into formats that may be used by some visualisation tools likeCytoscape
([?], http://www.cytoscape.org ), yED (http://www.yworks.com/products/yed/ )or
VisANT ([?], http://visant.bu.edu/ ).

Hereafter, we describe briefly some of the major formats usedfor graph description.

2.1.2 Graph formats

Incompatibility between file formats is a constant problem in bioinformatics. In order to
facilitate the use of the NeAT website, most of our tools support several among the most
popular formats used to describe networks.

• The tab-delimited format is a convenient and intuitive wayto encode a graph. Each
row represents an arc, and each column an attribute of this arc. The two columns fields
are the source and target nodes. If the graph is directed, thesource node is the node
from which the arc leaves and the target node is the node to which the arc arrives.
Logically, in undirected graph, the columns containing thesource and the target node
may be inverted. Some additional arc attributes (weight, label, color) can be placed
in pre-defined columns. Orphan nodes can be included by specifying a source node
without target. The toolPathfinder extends this format by supporting any number of
attributes on nodes or edges as well as the color, the label and the width of nodes and
edges.

• A GML file is made up of nested key-value pairs. The most popular graph editors sup-
port GML as input format (like Cytoscape and yED). More information on this format
can be found athttp://www.infosun.fim.uni-passau.de/Graphlet/GML/ .
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• TheDOT format is a plain text graph description language. DOT files can be loaded in
the programs of the suite GraphViz (http://www.graphviz.org/ ). It is a simple
way of describing graphs in a human- and computer-readable format. Similarly to GML,
DOT supports various attributes on nodes (i.e. color, width, label).

• VisML is the XML format required by VisANT, a very light but powerful visualisation
tool.

• Several tools also accept adjacency matrices as input. An adjacency matrix is aN x N
table (withN the number of nodes), where a cellA[i, j] indicates the weight of the edge
between nodesi and j (or 1 if the graph is unweighted).

2.2 Visualisation of a co-expression network

2.2.1 Study case

In this demonstration, we will show you how to visualize a network using some popular net-
work visualization tools. This network we will study consist in the top scoring edges of the
yeast co-expression network included in the integrative database String [?]. This undirected
weighted networks contains 537 nodes representing genes and 4801 edges. An edge between
two nodes means that they are co-expressed. The weight expresses at which level both genes
are co-expressed. We will explain how to display this network with NeAT, Cytoscape, yED
and VisANT. As Cytoscape and yED are not online tools, we will only describe their utiliza-
tion in the command-line section.

2.2.2 Protocol for the web server

Format conversion and layout calculation

1. In theNeATmenu, select the commandformat conversion / layout calculation.

In the right panel, you should now see a form entitled “convert-graph”.

2. Click on the linkDEMO.

The form is now filled with a graph in the tab-delimited format, and the parameters have
been set up to their appropriate value for the demonstration, i.e., the network will be
converted from tab-delimited to GML format, the source nodecolumn is 1, the target
column is 2 and the weight column is 3.

The optionCalculate the layout of the nodes (only relevant for GML output may also
be chosen, otherwise the nodes will all be in diagonal and theresulting graphic will not
be very instructive.

If the edges present a weight,convert-graph is able to represent the weight of the
edges by computing a color gradient proportional to edge weights and coloring the edges
according to it. There are five different color gradients : blue, red, green, grey and
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yellow to red. The darker (or the more colored) it is, the higher the weight. Moreover
convert-graph can also change the width of the edge proportionnally to its weight.
To this, we must choose a color gradient for theEdge color intensity proportional to
the weightand the optionEdge width proportional to the weight of the edgemust be
checked (which is automatically the case with the demonstration).

3. Click on the buttonGO.

The resulting graph in GML format is available as an HTML link. Right clink on the
link and save it with namestring_coexpression.gml.

Visualization using NeAT

1. In theNext Steppannel, click onDisplay the graph.

The form ofdisplay-graph is displayed. By default, the figure output format is jpeg,
change it to png which gives a better resolution. NeAT also allow the postscript format.

2. UncheckCalculate the layout of the nodes (mandatory for all input format except GML)
asconvert-graph already computed it.

3. CheckEdge width proportional to the weight of the edges

4. Click on theGO button.

The figure is available by clicking on the HTML link. Clicking athe link leads to a
static figure representing the network.

Visualization using VisANT

1. After the stepFormat conversion and layout calculation, click on theLoad in VisANT

A page is displayed. Three links are available

• A link to the graph in the format you obtained it fromconvert-graph (here GML).

• A link (VisANT logo) to the VisANT applet

• A link to the graph in VisML (the input format of VisANT)

2. Click on the logo of VisANT

The VisANT applet is loaded.

3. Accept the authentification certifate.
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2.2.3 Protocol for the command-line tools

Format conversion and layout calculation

If you have installed a stand-alone version of the NeAT distribution, you can use the programs
convert-graph anddisplay-graph on the command-line. This requires to be familiar with
the Unix shell interface. If you don’t have the stand-alone tools, you can skip this section
and read the next section (Interpretation of the results). To visualize the networks with yED,
VisANT or Cytoscape, you must of course install them on your computer.

1. First let us download the network filestring_coex_simple.tabfrom the NeAT tutorial
download page :http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/

2. In this first step, we will convert the tab delimited Stringnetwork that we just down-
loaded into a GML file by using this command. We compute the layout of the nodes.
Moreover, we compute an edge width and an color proportionalto the weight on the
edge.

convert-graph -from tab -to gml -wcol 3 -i string_coex_simp le.tab
-o string_coex_simple.gml -layout -ewidth -wcol 3 -ecolor s fire

Visualization using NeAT

Use the following command to create a graph using the NeATdisplay-graph program.

display-graph -in_format gml -out_format png -i string_co ex_simple.gml
-o string_coex_simple.png -ewidth

Visualization using Cytoscape (version 2.3)

1. Open Cytoscape

2. Click onFile > Import > Network...> Select

3. Select the filestring_coex_simple.gmlIf the graph contains more than 500 nodes, it will
not be displayed immediately. Right click on the name of the graph file in theCytopanel
1 and selectCreate view....

Visualization using yED (version 3)

1. Open yED

2. Click onFile > Import

3. Select the filestring_coex_simple.gml

As NeAT GML converter add edge labels of the typenodeName1_nodeName2for un-
weighted or unlabeled graph, you may need to remove the edge label for a better visi-
bility.
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4. Click on one edge (random)

The edge you clicked on is now selected.

5. PressCtrl+A

All edges are now selected.

6. In theProperty view(Right of the screen), in thelabelpart, uncheck thevisible option.
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3 Comparisons between networks

3.1 Introduction

Protein interaction networks have deserved a special attention for molecular biologists, and
several high-throughput methods have been developed during the last years, to reveal either
pairwise interactions between proteins (two-hybrid technology) or protein complexes (meth-
ods relying on mass-spectrometry). The terminteractomehas been defined to denote the
complete set of interactions between proteins of a given organism.

Interactome data is typically represented by an un-directed graph, where each node repre-
sents a polypeptide, and each edge an interaction between two polypeptides.

The yeast interactome was characterized by the two-hybrid method by two independent
groups, Uetz and co-workers [?], and Ito and co-workers [?], respectively. Surprisingly, the
two graphs resulting from these experiments showed a very small intersection.

In this tutorial, we will use the programcompare-graphsto analyze the interactome graphs
published by from Uetz and Ito, respectively.

We will first perform a detailed comparison, by merging the two graphs, and labelling each
node according to the fact that it was found in Ito’s network,in Uetz’ network, or in both. We
will then compute some statistics to estimate the significance of the intersection between the
two interactome graphs.

3.2 Computing the intersection, union and differences
between two graphs

3.2.1 Study case

In this demonstration, we will compare the networks resulting from the two first publications
reporting a complete characterization of the yeast interactome, obtained using the two-hybrid
method.The first network [?] contains 865 interactions between 926 proteins.The second net-
work [?] contains 786 interactions between 779 proteins. We will merge the two networks (i.e.
compute their union), and label each edge according to the fact that it is found in Ito’s network,
Uetz’ network, or both. We will also compute the statisticalsignificance of the intersection
between the two networks.

3.2.2 Protocol for the web server

1. In theNeATmenu, select the commandnetwork comparison.
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In the right panel, you should now see a form entitled “compare-graphs”.

2. Click on the buttonDEMO.

The form is now filled with two graphs, and the parameters havebeen set up to their
appropriate value for the demonstration. At the top of the form, you can read some
information about the goal of the demo, and the source of the data.

3. Click on the buttonGO.

The computation should take a few seconds only. The result page shows you some
statistics about the comparison (see interpretation below), and a link pointing to the full
result file.

4. Click on the link to see the full result file.

3.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT distribution, you can use the program
compare-graphson the command-line. This requires to be familiar with the Unix shell in-
terface. If you don’t have the stand-alone tools, you can skip this section and read the next
section (Interpretation of the results).

We will now describe the use ofcompare-graphsas a command line tool. The two two-
hybrid datasets described in the previous section may be downloaded at the following ad-
dresshttp://rsat.ulb.ac.be/rsat/data/neat_tuto_data/ . These are the
filesuetz_2001.tabandito_2002.tab.

1. Go in the directory where the files containing the graphs tocompare are located.

2. Type the following command

compare-graphs -v 1 -Q ito_2002.tab -R uetz_2001.tab -retu rn union \
-o uetz_2001_union_ito_2002.tab

Using these options, some comparaison statistics are displayed and the results are stored in
the tab-delimited fileuetz_2001_union_ito_2002.tab.

In order to compute the difference or the intersection, you must change the-returnoption.
For example, to compute the intersection, you shoud type.

compare-graphs -v 1 -Q ito_2002.tab -R uetz_2001.tab -retu rn intersection \
-o uetz_2001_inter_ito_2002.tab

3.2.4 Interpretation of the results

The programcompare-graphsuses symbolsR andQ respectively, to denote the two graphs
to be compared. Usually,R stands for reference, andQ for query.

In our case,R indicates Ito’s network, whereasQ indicates Uetz’ network. The two input
graphs are considered equivalent, there is no reason to consider one of them as reference, but
this does not really matter, because the statistics used forthe comparison are symmetrical,as
we will see below.
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Union, intersection and differences

The result file contains the union graph, in tab-delimited format. This format is very conve-
nient for inspecting the result, and for importing it into statistical packages (R, Excel, . . . ).

The rows starting with a semicolon (;) are comment lines. They provide you with some
information (e.g. statistics about the intersection), butthey will be ignored by graph-reading
programs. The description of the result graph comes immediately after these comment lines.

Each row corresponds to one arc, and each column specifies oneattribute of the arc.

1. source: the ID of the source node

2. target: the ID of the target node

3. label: the label of the arc. As labels, we selected the option “Weights on the query and
reference”. Since the input graphs were un-weighted, edge labels will be used instead
of weights. The label<NULL> indicates that an edge is absent from one input network.

4. color andstatus: the status of the arc indicates whether it is found at the intersection,
or in one graph only. A color code reflects this status, as indicated below.

• R.and.Q: arcs found at the intersection between graphsR andQ. Default color:
green.

• R.not.Q: arcs found in graphR but not in graphQ. Default color: violet.

• Q.not.R: arcs found in graphQ but not in graphR. Default color: red.

The result file contains several thousands of arcs, and we will of course not inspect them
by reading each row of this file. Instead, we can generate a drawing in order to obtain
an intuitive perception of the graph.

Sizes of the union, intersection and differences

The beginning of the result file gives us some information about the size of the two input
files, their union, intersection, and differences.

; Counts of nodes and arcs
; Graph Nodes Arcs Description
; R 779 786 Reference graph
; Q 926 865 Query graph
; QvR 1359 1529 Union
; Q^R 346 122 Intersection
; Q!R 580 743 Query not reference
; R!Q 433 664 Reference not query
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Statistical significance of the intersection between two gra phs

The next lines of the result file give some statistics about the intersection between the
two graphs. These statistics are computed in terms of arcs.

; Significance of the number of arcs at the intersection
; Symbol Value Description Formula
; N 1359 Nodes in the union
; M 922761 Max number of arcs in the union M = N * (N-1)/2
; E(Q^R) 0.74 Expected arcs in the intersection E(Q^R) = Q * R/M
; Q^R 122 Observed arcs in the intersection
; perc_Q 14.10 Percentage of query arcs perc_Q = 100 * Q^R/Q
; perc_R 15.52 Percentage of reference arcs perc_R = 100 * Q^R/R
; Jac_sim 0.0798 Jaccard coefficient of similarity Jac_sim = Q^R/(QvR)
; Pval 2.5e-228 P-value of the intersection Pval=P(X >= Q^R)

A first interesting point is the maximal number of arcs (M) that can be traced between
any two nodes of the union graph. In our study case, the graph obtained by merging Ito’s
and Uetz’ data containsN= 1359 nodes. This graph is un-directed, and there are no self-
loops. The maximal number of arcs is thusM = N∗ (N−1)/2= 922,761. This number
seems huge, compared to the number of arcs observed in eitherUetz’ (AQ = 865) or
Ito’s (AR= 786) graphs. This means that these two graphs are sparse: only a very small
fraction of the node pairs are linked by an arc.

The next question is to evaluate the statistical significance of the intersection between
the two graphs. For this, we can already compute the size thatwould be expected if we
select two random sets of arcs of the same sizes as above (AQ = 865,AR = 4,038).

If the same numbers of arcs were picked up at random in the union graph, we could
estimate the probability for an arc to be found in the networkR as follows: P(R) =
AR/M = 0.000852. Similarly, the probability for an arc of the union graph to be part
of the networkQ is P(Q) = AQ/M = 0.000937. The probability for an arc to be found
independently in two random networks of the same sizes asR andQ is the product of
these probabilities.

P(QR) = P(Q)∗P(R) = AR/M ·AQ/M = 7.98e−07

The number of arcs expected by chance in the intersection is the probability multiplied
by the maximal number of arcs.

E(QR) = P(QR) ·M

= (AQ ·AR)/M

= 7.98e−07·922761= 0.74
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Thus, at the intersection between two random sets of interaction, we would expect on
the average a bit less than one interaction. It seems thus clear that the 122 interactions
found at the intersection between he two published experiments is much higher than the
random expectation.

We can even go one step further, and compute theP-valueof this intersection, i.e. the
probability to select at least that many interactions by chance.

The probability to observeexactly xarcs at the intersection is given by the hypergeo-
metrical distribution.

P(QR= x) =
Cx

RCQ−x
M−R

CQ
M

(3.1)

where

R is the number of arcs in the reference graph;

Q i the number of arcs in the query graph;

M is the maximal number of arcs;

x is the number of arcs at the intersection between the two graphs.

By summing this formula, we obtain the P-value of the intersection, i.e. the probability
to observeat least xarcs at the intersection.

Pval= P(QR>= x) =
min(Q,R)

∑
i=x

P(X = i) =
min(Q,R)

∑
i=x

Ci
RCQ−i

M−R

CQ
M

We can replace the symbols by the numbers of our study case.

Pval = P(QR>= 122)

=
min(865,786)

∑
i=x

Ci
786C

865−i
922761−786

C865
922761

= 2.5e−228

This probabilty is so small that it comes close to the limit ofprecision of our program
(≈ 10−321).

Summary

In summary, the comparison revealed that the number of arcs found in common between the
two datasets (Ito and Uetz) is highly significant, despite the apparently small percentage of the
respective graphs it represents (14.10% of Ito, and 15.52% of Uetz).
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3.3 Strengths and weaknesses of the approach

3.4 Exercises

1. Using the tool the toolnetwork randomization , generate two random graphs of 1000
nodes and 1000 arcs each (you will need to store these random networks on your hard
drive). Use the toolnetwork comparison to compare the two random graphs. Discuss
the result, including the following questions:

a) What is the size of the intersection ? Does it correspond to the expected value ?

b) Which P-value do you obtain ? How do you interpret this P-value ?

2. Randomize Ito’s network with the toolnetwork randomization , and compare this ran-
domized graph with Uetz’ network. Discuss the result in the same way as for the previ-
ous exercise.

3.5 Troubleshooting

1. The P-value of the intersection between two graphs is 0. Does it mean that it is impos-
sible to have such an intersection by chance alone ?

No. Any intersection that you observe in practice might occur by chance, but the limit
of precision for the hypergeometric P-value is≈ 10−321. Thus, a value of 0 can be
interpreted asPval< 10−321.

2. The web server indicates that the result will appear, and after a few minutes my browser
displays a message “No response the server”.

How big are the two graphs that you are comparing ? In principle, compare-graphs can
treat large graphs in a short time, but if your graphs are verylarge (e.g. several hundreds
of thousands of arcs), the processing time may exceed the patience of your browser. In
such case, you should consider either to install the stand-alone version ofNeATon your
computer, or write a script that usesNeATvia their Web services interface.
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4 Node degree statistics

4.1 Introduction

In a graph, the degreek of a node is the number of edges connected to this node. If the graph
is directed, we can make a distinction between the in-degree(the number input arcs) and the
out-degree (number of output arcs). In this case, the degreeof the node consists in the sum of
the in-degree and of the out-degree of this node.

Different nodes having different degrees, this variability is characterized by the degree dis-
tribution functionP(k), which gives the probability that a node has exactlyk edges, or, in other
words gives the observed frequency of a node of degreek.

Scale-free graphs were first described by Barabasi based on the study of the web connectiv-
ity, followed by several different biological networks [?].

A graph is scale-free if the distribution of the vertex degree (k) follows a power-law distri-
bution of the formP(k) k−γ.

The main property of such graphs is that it should have on one hand some highly connected
nodes, called hubs, which are central to the network topology, andkeep the network together
and on the other hand a lot of poorly connected nodes linked tothe hubs.

In the following, we will check if this scale free property also applies to the two-hybrid
network described by Uetzet al [?] by computing the degree of each node and plotting the
node degree distribution of the graph.

4.2 Analysis of the node degree distribution of a
biological network

4.2.1 Study case

In this demonstration, we will analyze the node degree distribution of the first published yeast
protein interaction network. This network is the first attemp to study the yeast interactome
using the two-hybrid method and contains 865 interactions between 926 proteins [?].

4.2.2 Protocol for the web server

1. In theNeATmenu, select the commandnode topology statistics.

In the right panel, you should now see a form entitled “graph-topology”.

2. Click on the buttonDEMO.
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The form is now filled with a graph in the tab-delimited format, and the parameters have
been set up to their appropriate value for the demonstration, i.e., the degree of all nodes
will be computed. At the top of the form, you can read some information about the goal
of the demo, and the source of the data.

As this is a protein - protein interaction graph, we can consider that an interaction be-
tween a protein A with a protein B corresponds to an interaction between protein B and
protein A. The graph is thus not directed.

You can uncheck the compution of the closeness and betweenness as these statistics will
not be discussed in this section and as this process will increase the computation time.

3. Click on the buttonGO.

The computation should take less than one minute. On one hand, the result page displays
a link to the result file and on the other hand the graphics and raw data of the node degree
distribution are also available. These will be discussed intheInterpretation of the results
section.

4.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT distribution, you can use the program
graph-topology on the command-line. This requires to be familiar with the Unix shell in-
terface. If you don’t have the stand-alone tools, you can skip this section and read the next
section (Interpretation of the results).

We will now describe the use ofgraph-topology as a command line tool. The two two-
hybrid dataset described in the previous section may be downloaded at the following ad-
dresshttp://rsat.ulb.ac.be/rsat/data/neat_tuto_data/ . This is the file
uetz_2001.tab.

1. The first step consist in applyinggraph-topology on the two-hybrid dataset. To this, go
into the directory where you downloaded the fileuetz_2001.taband use this command.

graph-topology -v 1 -i uetz_2001.tab -return degree -all \
-o uetz_2001_degrees.tab

The fileuetz_2001_degrees.tabis created and contains the degree of each node of the
Uetzet al data set.

2. In the second step, we will study the degree distribution of the nodes. To this, we use
the programclassfreq from the RSAT suite that compute the distribution of a set of
number. As the graph we are working with is undirected, we will only compute this
degree distribution for the global degree of the nodes whichis the second column of the
file uetz_2001_degrees.tabobtained in the previous step.

classfreq -i uetz_2001_degrees.tab -v 1 -col 2 -ci 1 \
-o uetz_2001_degrees_freq.tab
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3. Finally, we will display the distribution graph in the PNGformat in order to visualize
the degree distribution and determine if it has a scale free behaviour. The program XY-
graph fromRSATwill be used for this purpose. Note that we could use other tools like
Microsoft Excel or R . The results will be stored in the fileuetz_2001_degrees_freq.png
that you can open with any visualization tool.

XYgraph -i uetz_2001_degrees_freq.tab \
-title 'Global node degree distribution (interaction grap h: Uetz 2001)' \
-xcol 2 -ycol 4,6 -xleg1 Degree -lines \
-yleg1 'Number of nodes' -legend -header -format png \
-o uetz_2001_degrees_freq.png

4.2.4 Interpretation of the results

graph-topology result file

Open the resulting file produced bygraph-topology. According to the requested level of
verbosity (-v # option), the file begins with some lines starting with the ’#’or ’;’ symbols that
contains some information about the graph and the description of the columns.

The results consists in a two columns data set.

1. Node name

2. Global degree

Note that if you used the ’-directed’ option, the resulting file contains 3 more columns
specifying the in-degree, the out-degree and whether the node is only a source node or a target
node.

Node degree distribution

Let us first have a look at the node degree distribution data file produced by theclassfreq
program (raw data). This file is a tab-delimited file containing 9 columns. Each line consists
in a value interval. In our case, the value is the degree of thenodes.

1. Minimal value of the interval

2. Maximal value of the interval

3. Central value of the interval

4. Frequency : Number of elements in this class interval (number of nodes having a degree
comprised betwee the minimal and the maximal values.

5. Cumulative frequency.

6. Inverse cumulative frequency

21



7. Relative frequency : number of elements in this class over the total number of elements

8. Relative cumulative frequency

9. Inverse relative cumulative frequency

The first result line contains the distribution results for the nodes having only one neighbour
(i.e. degree comprised between 1 and 2), from it we can see that 577 over 926, i.e., 62% of
the nodes have a degree of one. Moreover, about 90% of the nodes have a degree lower than
4. This is indicative of the scale-free nature of the interaction network.

The figure best illustrates the scale-freeness of the graph.When looking at the graphical
representation of this distribution, we can see two curves.The blue curve represents the abso-
lute frequency and the green curve the inverse cumulative frequency. The exponential decrease
of both curves shows that there are a lot more nodes poorly connected than highly connected
(hubs). The Uetz graph thus presents a scale free behaviour.

chapterStudy of the neighborhood of the nodes

4.3 Introduction

In a graph, the neighbours of a node consist in the set of nodesthat are connected to this node
up to a certain distance, i.e., the number of steps between the source node and its neighbours.
In weighted graphs, one can also consider the neighbours up to a certain maximal weight.

In the following, we will refer to the node for which we searchthe neighbours theseed
node.

According to the type of graph, it might be interesting to retrieve the neighbours of the
nodes in a graph.

For example, in protein-protein interaction network, the function of the neighbours of a
protein whose biological role is unknown might give insights in the function of the protein.
Moreover, in interaction graphs, if a group of neighbours have similar biological functions,
they are likely to form a structural complex.

In co-regulation networks, where each node is a gene and an edge between two genes means
that those genes are co-regulated (i.e. co-repressed and co-expressed), exploring the neigh-
bours of the nodes may help in the discovery of new regulons.

In the following, we will illustrate the study of nodes neighborhood by looking for neigh-
bours of some orphan proteins (i.e. protein of unknown function) in a protein protein interac-
tion network. We will then look if the neighbours of these proteins present similar functions.

4.4 Analysis of the neighbours of orphan nodes in an
interaction protein network

4.4.1 Study case

In this demonstration, we will analyze the neighbours of theorphan nodes of the Gavinet al
(2006) interaction data set. These interaction data were obtained by co-immunoprecipitation
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followed by a mass spectrometry experiment in order to discover structural protein complexes.
[?]. This network contains 6531 interactions between 1430 proteins.

We will then compare these groups of neighbours with functionnal classes of proteins an-
notated in the MIPS [?] in order to detect if the groups of neighbours present a significatively
high number of co-regulated proteins.

4.4.2 Protocol for the web server

1. In theNeATmenu, select the commandget node neighborhood. In the right panel,
you should now see a form entitled “graph-neighbours”.

2. Open a connection to the demo dataset download web page.

http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/

3. Download the filesgavin_2006_names.tab, orphan_gavin.tabandmips_name_class_description.tab
on your computer.

4. In theUpload graph from filetext area, load the filegavin_2006_names.tabyou just
downloaded.

5. UncheckInclude each node in its neighborhood (with a distance of zero)

6. Check the radio-buttonNode selectionin the seed node part of the form

7. In theUpload seed nodes from filetext area, load the fileorphan_gavin.tab.tabyou just
downloaded.

8. Click on the buttonGO.

The computation should take less than one minute.

The result page should display the results in the tab-delimited or HTML format. These
files will be described in the sectionInterpretation of the results

9. We will now see if the different groups of neighbours contain a significantly high num-
ber of proteins of similar function. To this, we will comparethe groups of neighbours
we just obtained with annotated groups of proteins, e.g., the genes annotated accord-
ing to the gene ontology [?] or, in this example, according to the functionnal classes
of the MIPS [?]. In the Next steppannel, click on the buttonCompare the groups of
neighbours.

You are redirected to the form of another programcompare-classesthat allows to com-
pare two class files (the query file and the reference file). Each class of a query file
is compared to each class of a reference file. The number of common elements is re-
ported, as well as the probability to observe at least this number of common elements by
chance alone. The query classes are already loaded and consist in the different groups
of neighbours we discovered previously withgraph-neighbours.
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10. In theUpload reference classes from filetext area, load the filemips_name_class_description.tab
downloaded in the first part of this tutorial. The classes files are two column files, the
first column contains the elements and the second column the class to which the ele-
ments belong. Elements may belong to more than one class.

11. The default paramaters are sufficient. We will only keep the comparison presenting a
significance higher than 0.

12. Click on the buttonGO.

13. You obtain the links to the result file in the tab-delimited format or in the HTML format.
The obtained results will be described in the next section.

4.4.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT distribution, you can use the program
graph-neighbours on the command-line. This requires to be familiar with the Unix shell
interface. If you don’t have the stand-alone tools, you can skip this section and read the next
section (Interpretation of the results).

We will now describe the use ofgraph-neighbours as a command line tool. The Gavinet
al (2006) [?] co-immunoprecipitation dataset described in the previous section and the other
files necessary for this tutorial may be downloaded at the following address

http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/
(gavin_2006_names.tab, orphan_gavin.tabandmips_name_class_description.tab).

1. The first step consist in applyinggraph-neighbours on the co-immunoprecipitation
dataset. To this, go into the directory where you downloadedthe filesgavin_2006_names.tab,
orphan_gavin.taband use this command.

graph-neighbours -v 1 -i gavin_2006_names.tab \
-seedf orphan_gavin.tab \
-o gavin_2006_orphan_neighbours_1.tab

The filegavin_2006_orphan_neighbours_1.tabis created and contains for each node of
the seed file the list of its direct neighbours, i.e., for eachprotein, the list of proteins that
co-precipitated with it.

2. In the second step, we will compare these groups of neighbours to different groups of
annotated proteins in order to discover if the groups of neighbours do contain a signi-
ficatively high number of proteins of similar functions. This will give insights into the
function of the orphans proteins used as seed nodes in the first step. To this, we will use
the RSATcompare-classesprogram that allows to compare two class files (the query
file and the reference file) (see previous section or the RSAT tutorial for a more com-
plete description ofcompare-classes). Use the following command to compare the two
files.
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compare-classes -v 1 \
-q gavin_2006_orphan_neighbours_1.tab \
-r mips_name_class_description.tab \
-lth sig 0 -sort sig -return proba,occ,jac_sim \
-o gavin_2006_orphan_neighbours_1_cc_mips_functionna l_classes.tab

We obtain a filegavin_2006_orphan_neighbours_1_cc_mips_functionnal_classes.tabcon-
taining the significant comparaison results. We will discuss it in the following section (inter-
pretation of the results).

4.4.4 Interpretation of the results

graph-neighbours result file

According to the requested level of verbosity, the result file may first contain several lines
(starting with “#” or “;”). These deliver some information about the analysed graph (number
of nodes, edges, seed nodes, ...). The results are then displayed in four columns.

1. Name of the neighbour.

2. Name of the seed node (for which the neighbours are seeked in the graph).

3. Distance between the seed node and its neighbour (number of steps).

4. The last column, only relevant for directed graph, indicate whether the arc between the
seed node and its neighbour is an out- or an in-going arc.

This file can be considered as a class file (see above for a more complete description) with
the name of the neighbour being the member (first column) and the name of the seed node, the
name of the class (second column).

compare-classes result file

The result of the comparaison between the groups of neighbours and the MIPS annotated
classes are displayed in a multi-column file sorted by decreasing order of significance. When
looking at the HTML version of the file, you may click on the header on the column to sort
the table according to this field.

Each line displays the comparaison between a MIPS annotatedclass (reference class) and a
group of neighbours (query class). What we want to know is if there is a significatively high
number of members of the same MIPS class in a given group of neighours.

ref Name of the MIPS functionnal class.

query Name of the group of neighbours (seed node).

R Size of the reference class (number of members in this MIPS class).
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Q Size of the query class (number of neighbour for this seed node).

QR Intersection size between the group of neighbours and thefunctionnal class.

QvR Union size between the group of neighbours and the functionnal class.

R!Q Elements that are in the functionnal class but not in the groups of neighbours.

Q!R Elements that are not in the functionnal class but are in the groups of neighbours.

!Q!R Elements that are not in the functionnal class nor in thegroups of neighbours.

P-val P-value of the comparaison, propability (according to the hypergeometric law) to be
wrong when claimin that there is a significatively high number of proteins of the same
class in the group of neighbours.

E-val E-value of the comparaison. P-value multiplied by thetotal number of comparaisons.
This value corresponds to the estimated number of false positives for a given P-value
threshold.

sig Significance of the comparaison. This correpsonds to−log10(E − val). This index
gives an intuitive perception of the exceptionality of the common elements : a negative
significance indicates that the common matches are likely tocome by chance alone, a
positive value that they are significant.

Considering the file, we can observe that 7 seed nodes (on the 46) have a group of neigh-
bours presenting a similar function. For example, 9 out of the 10 neighbours of the Yil161w
protein (interacting with this protein) have their function related to ribosome biogenesis and 8
out of 10 neigbours are located in the cytoplasm. This may indicate that this protein may also
be implied in ribosome biogenesis
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5 Graph clustering

5.1 Introduction

Abruptely, graph clustering consists in grouping the nodesof the networks into different
classes or clusters. The groupment of the nodes can be done according to various different
criteria, i.e., nodes of the same color, nodes of the same type, etc. Commonly, nodes are
grouped according to the fact they present a relatively highnumber of connections between
them compared to the number of connections with the other nodes composing the network. In
the following, we will only consider clustering methods aiming at retrieving highly intercon-
nected groups of nodes in a network.

In bioinformatics, a lot of clustering approaches have already been applied to various types
of network, e.g. protein-protein interaction network (seeamong others [?, ?, ?]), metabolic
graphs [?], biological sequences ([?, ?]), etc.

Clustering of protein interaction network may be of valuablehelp in order to retrieve in
a large graphs real biological complexes in the cell. Moreover, if in the detected complexes
some of proteins are of unknown function but the rest of the proteins present all present a
similar function, this may give insights in the function of the unknown protein.

In the following, we will apply different graph based clustering approaches on the yeast
protein - protein interaction network published by Gavinet al [?] and obtained by multiple
co-immunoprecipitation experiments with each yeast protein used as bait followed by a mass
spectrometry procedure to identify all the proteins that precipitated with the baits.

The clustering algorithms we will apply are theMCL [?, ?] and RNSC [?]. Hereafter,
follows a short description of both clustering algorithms copied from [?].

The Markov Cluster algorithm (MCL ) simulates a flow on the graph by calculating succes-
sive powers of the associated adjacency matrix. At each iteration, aninflation stepis applied
to enhance the contrast between regions of strong or weak flowin the graph. The process
converges towards a partition of the graph, with a set of high-flow regions (the clusters) sepa-
rated by boundaries with no flow. The value of theinflation parameterstrongly influences the
number of clusters.

The second algorithm, Restricted Neighborhood Search Clustering (RNSC), is a cost-based
local search algorithm that explores the solution space to minimize a cost function, calculated
according to the numbers of intra-cluster and inter-cluster edges. Starting from an initial
random solution,RNSC iteratively moves a vertex from one cluster to another if this move
reduces the general cost. When a (user-specified) number of moves has been reached without
decreasing the cost function, the program ends up.

In order to dispose of a negative control, we advice the reader to read the next chapter about
graph randomization and alteration.
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5.2 Network clustering comparison

5.2.1 Study case

In this demonstration, we will compare the performances of two graph based clustering al-
gorithmsMCL and RNSC. First, we will apply them to the protein - protein interaction
described by Gavinet al [?], secondly we will compare the resulting clusters to the complexes
annotated for the yeast in the MIPS database [?].

Note that as the interaction network and the MIPS complexes are different dataset (i.e.
different proteins), the performances of the algorithm will be rather low.

To run this tutorial on the command line, you need to have bothRNSC andMCL installed
on your computer. You can find the MCL source code onhttp://micans.org/mcl/andRNSC
onhttp://rsat.ulb.ac.be/ rsat/rnsc/rnsc_rewritten_compiled32.zip.

5.2.2 Protocol for the web server

Dataset download

Go on the NeAT demo dataset web page (http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/) and
download the MIPS complexes (mips_complexes.tab)..

Network clustering with MCL

1. In theNeAT left menu, select the commandgraph-based clustering (MCL).

In the right panel, you should now see a form entitled “MCL”.

2. Click on the buttonDEMO.

The form is now filled with the Gavin co-immunoprecipitationprotein interaction net-
work graph in the tab-delimited format, and the parameters have been set up to their
appropriate value for the demonstration, i.e., the inflation value (the MCL main param-
eter) is set to 1.8, the optimal value forMCL protein interaction network clustering
[?].

The inflation acts mainly on the number of clusters resultingfrom the clustering, i.e., by
increasing the inflation, you will obtain a larger number of smaller clusters.

Note that MCL accepts weighted networks (which is not the casehere), a higher weight
on an edge will reinforce the strength of the link between twonodes.

3. Click on the buttonGO.

The computation should take less than one minute. On one hand, the result page displays
a link to the result file and on the other hand a graphic showingthe size distribution of
the obtained complexes is also available. These will be discussed in theInterpretation
of the resultssection.
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4. Save the resulting file under the namegavin_2006_mcl_inf_1.8_clusters.tabby right
clicking on the resulting file and choosingSave as ....

Network clustering with RNSC

1. In theNeAT left menu, select the commandgraph-based clustering (RNSC).

In the right panel, you should now see a form entitled “RNSC”.

2. Click on the buttonDEMO.

The form is now filled with the Gavin co-immunoprecipitationprotein interaction net-
work graph in the tab-delimited format, and the parameters have been set up to their
appropriate value for the demonstration, i.e., the numerous RNSC parameters are set
to the optimal values forRNSC protein interaction network clustering determined in
[?]. However, in this study, we found that theRNSC performances were not strongly
affected by the parameters values.

Note that, unlike MCL, RNSC does not accept weighted networks.

3. Click on the buttonGO.

The computation should take less than one minute. On one hand, the result page displays
a link to the result file and on the other hand a graphic showingthe size distribution of
the obtained complexes is also avaible. These will be discussed in theInterpretation of
the resultssection.

4. Save the resulting file under the namegavin_2006_rnsc_clusters.tabby right clicking
on the resulting file and choosingSave as ....

Clustering quality assessment

In the following, we will only describe the procedure to quantify the performances of the
clustering algorithms by comparing theMCL obtained clusters to the complexes annotated in
the MIPS database. You will thus have to redo this whole section with theRNSC clustering
results.

1. In theNeAT left menu, select the commandCompare classes/clusters.

In the right panel, you should now see a form entitled “compare-classes”. This program
will build a contigency table, i.e., a table where each line represents the annotated com-
plexes and each column the clusters of highly connected proteins. This matrix will then
be used to compute quality statistics.

2. In the “Upload query classes from file” menu, select the filegavin_2006_mcl_inf_1.8_clusters.tab
we just computed.

3. In the “Upload reference classes from file” menu, select the filemips_complexes.tabwe
just downloaded.
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4. Select “Matrix file” as output format

5. Click on the buttonGO.

6. The contigency table (see the resulting links as text or HTML file) can now be used in
the next process by clicking on the buttoncontingency table statistics.

In the right panel, you should now see a form entitled “contingency-stats”. This program
will compute the statistics described in [?], namely thePPV, the sensitivityand the
Separationstatistics in order to estimate the quality of a clustering results to predict the
complexes annotated in the MIPS.

7. Click on the buttonGO.

The resulting statistics will be described in the followingsectionInterpretation of the
results, save them under the namegavin_2006_mcl_inf_1.8_vs_mips_stats.tab.

Re-do the whole procedure with the file obtained withRNSC and save the contingency-
stats output under the namegavin_2006_rnsc_vs_mips_stats.tab.

5.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT distribution, you can also use all the
programs on the command-line. This requires to be familiar with the Unix shell interface.
If you do not have the stand-alone tools, you can skip this section and read the next section
(Interpretation of the results).

The explanation of the parameters used forRNSC andMCL in this approach are described
in theWeb serversection of this chapter.

We will now describe the use ofRNSC, MCL , compare-classes, convert-classes, convert-
graph andcontigency-statsas command line tools. As a preliminary step, go on the NeAT
demo dataset web page (http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/) and download the
MIPS complexes (mips_complexes_names.tab) and the Gavin interaction dataset (gavin_2006_names.tab

Network clustering with MCL

1. The first step consist in applyingMCL on the co-immunoprecipitation dataset. To
this, go into the directory where you downloaded the fileuetz_2001.taband use this
command.

mcl gavin_2006_names.tab -I 1.8 --abc -o gavin_2006_mcl_i nf_1.8_clusters.mcl

The file gavin_2006_mcl_inf_1.8_clusters.mclis created and contains the clusters of
highly connected node in the interaction dataset. However,this file is formatted in
the MCL format that is not usable by the NeAT / RSAT tools. We will thus use the
programconvert-classesto convert this file in a tab delimited format with the following
command.
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convert-classes -i gavin_2006_mcl_inf_1.8_clusters.mc l \
-o gavin_2006_mcl_inf_1.8_clusters.tab \
-from mcl -to tab

The resulting file is a two column file containing for each node(first column) the cluster
to which it belongs (second column).

Network clustering with RNSC

1. The first step will consist in converting the tab delimitedformat in which the protein
interaction dataset is encoded into a format readable by theRNSC clustering algorithm.
To this, we will use the convert-graph programwith the following command.

convert-graph -from tab -to rnsc \
-i gavin_2006_names.tab -o gavin_2006_rnsc

Two files are created,gavin_2006_rnsc.rnscand gavin_2006_rnsc_node_names.rnsc.
The first one contains the graph in itself, under the format ofan adjacency list. However,
each node is identified by a number. The protein names corresponding to the nodes
identifiers are encoded in the second file (two column tab delimited file).

2. We can now applyRNSC on the network with the following command.

rnsc -g gavin_2006_rnsc.rnsc -t 50 -T 1 -n 15 -N 15 -e 3 -D 50 \
-d 3 -o gavin_2006_rnsc_clusters.rnsc

The file gavin_2006_rnsc_clusters.rnscis created and contains the clusters of highly
connected node in the interaction dataset. However, this file is formatted in theRNSC
format that is not usable by theNeAT / RSATtools. We will thus use the program
convert-classesto convert this file in a tab delimited format with the following com-
mand.

convert-classes -i gavin_2006_rnsc_clusters.rnsc \
-o gavin_2006_rnsc_clusters.tab \
-from rnsc -to tab \
-names gavin_2006_rnsc_node_names.rnsc

The resulting file is a two column file containing for each node(first column) the cluster
to which it belongs (second column).
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Assessing clustering quality

In this section, we will describe how to build a contingency table by comparing the clusters
extracted from the networks byMCL and RNSC to annotated complexes and the way to
compute statistics on this contingency-table.

We will only describe the procedure for theMCL results. You should redo this section for
theRNSC clustering results.

1. The programcompare-classescan build (among other things) a contingency table, i.e.,
a table where each line represents the annotated complexes and each column the clusters
of highly connected proteins. This table will then be used tocompute quality statistics.

compare-classes -q gavin_2006_inf_1.8.tab \
-r mips_complexes_names.tab -matrix QR \
-o gavin_2006_inf_1.8_cc_complexes_matrix.tab

The filegavin_2006_inf_1.8_cc_complexes_matrix.tabnow contains a contigency table
in a tab delimited format.

2. We can now study the quality of the clustering with thecontingency-statstool that was
used in [?] to computed standard evaluation statistics like thePPV, sensitivity and the
accuracy that will be precisely described in the following.

contingency-stats -i gavin_2006_inf_1.8_cc_complexes_ matrix.tab \
-o gavin\_2006\_mcl\_inf\_1.8\_vs\_mips\_stats.tab

Re-do this section with thegavin_2006_rnsc_clusters.rnscto obtain a file calledgavin_2006_rnsc_vs_mips_stats.tab

5.2.4 Interpretation of the results

Files description

Contingency table As already explained in a previous section, havingn MIPS complexes
andm clusters, the contingency tableT is a n ·m matrix where rowi corresponds to theith

annotated complex, and columnj to the jth cluster. The value of a cellTi, j indicates the
number of proteins found in common between complexi and clusterj.

The clustering quality will be evaluated from this table by calculating the Sensitivity (Sn),
the Positive predictive value (PPV), the row wise separation (Sepr ) and the cluster separation
(Sepc).

Contingency table metrics A list of metrics and their value. These will be described in
the next section.
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Metrics description

Sensitivity, Positive predictive value and geometric accur acy For each complex,
we can calculate a sensitivity value. This corresponds to the maximal fraction of protein of
a complex that are attributed by a clustering algorithm to the same cluster.Snmeasures how
well proteins belonging to the same complex are grouped within the same cluster.

Sni. =
maxi.(Ti j )

Ni

whereNi corresponds to the size of the complex.

Moreover, for each clusterj, we calculated the Positive Predictive Value (PPV) which cor-
responds to the maximal fraction of a cluster belonging to the same complex. This reflects the
ability of this cluster to detect one complex.

PPV. j =
max. j(Ti j )

M j

whereM j corresponds to the cluster size.

To summarize these values at the level of the confusion table, we calculated the average
of these values. First, we calculated their classical mean by averaging all thePPV. j andSni.

values. We also calculated a weighted mean where the clusters and complexes have a weight
proportional to their relative size on the the calculation of the mean.

Sn=
∑n

i=1Sni.

n

PPV=
∑m

j=1PPV. j
m

Snw =
∑n

i=1NiSni.

∑n
i=1Ni

PPVw =
∑m

j=1M jPPV. j

∑m
j=1M j

Sensitivity andPPV reflect two contradictory tendencies of the clustering.Sn increases
when all the proteins of the same complex are grouped in the same cluster andPPV decreases
when proteins coming from different complexes are grouped in the same cluster. If all the
proteins of the network are grouped in the same cluster, we maximize theSnbut thePPV
is almost 0. On the other hand, if each protein is placed in a different cluster, thePPV is
maximized but the sensitivity is very low. A compromise mustbe found between these two
cases by using another statistics. We defined the geometric accuracy as the geometrical mean
of thePPV and theSn.

Accg =
√

PPV ·Sn
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Separation We also defined another metrics calledSeparation(Sep). High Sepvalues
indicated a high bidirectionnal correspondance between a cluster and a complex.

The row-wise separation estimates how a complex is isolatedfrom the others. Its maximal
value is 1 if this correspondance is perfect, i.e., when all the protein of a complex are grouped
in one cluster and if this cluster does not contain any other protein. This maximal value
may also be reached when the complex is separated between many clusters containing only
members of the complex.

Sepr i. =
m

∑
j=1

(
Ti, j

∑m
j=1Ti, j

·
Ti, j

∑n
i=1Ti, j

)

The column-wise separation indicates how well a cluster isolates one or more complex from
the other clusters. The maximal value 1 indicates that a cluster contains all the elements of
one or more complexes.

Sepc. j =
n

∑
i=1

(
Ti, j

∑m
j=1Ti, j

·
Ti, j

∑n
i=1Ti, j

)

As for the sensitivity and thePPV, for each clustering result, all values ofSepc. j andSepr i.

are averaged over all clusters and all complexes. We then calculate a global separation value
by calculating the geometrical mean of the average row wise separation and of the average
column wise separation.

Sep=
√

Sepc ·Sepr

Score comparaison

In the following, we can observe the statistics described inthe previous paragraph computed
for the clustering results ofRNSC andMCL .

We can observe thatMCL seems to produce slightly more valuable results as

1. The unweighted sensitivity is a bit higher forMCL than forRNSC and the weighted
sensitivity is much higher.

2. ThePPV is a only bit lower forMCL than forRNSC.

These results might certainly be explained by the large number of clusters found by
RNSC compared toMCL . Indeed, thePPV increases and the sensitivity decreases with
the number of a clusters. We can observe the same tendencies for the other metrics.

3. Global metrics (accuracy and separation) are generally higher for MCL than for RNSC
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metrics RNSC MCL
ncol 470 189
nrow 220 220
min 0 0
max 18 27
mean 0.0086 0.0214
sum 889 889
Sn 0.603 0.652
PPV 0.424 0.472
acc 0.513 0.562
acc_g 0.505 0.555
Sn_w 0.622 0.767
PPV_w 0.642 0.549
acc_w 0.632 0.658
acc_g_w 0.632 0.649
sep 0.303 0.353
sep_c 0.207 0.381
sep_r 0.443 0.327

Remark: The following table was generated using the RSAT programcompare-scores, see
the help of this command line tool for more information
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6 Influence of graph alteration and
randomization on clustering

6.1 Introduction

Although negative controls and method evaluation are crucial points to the experimental biol-
ogist, this is far from being the same in bioinformatics where, too often, no negative control is
associated to the predictions, so that one cannot estimate the probability of these predictions
to biogically valid.

For this reason, in NeAT we developped programs allowing to randomize and to add some
specified levels of noise to networks. This allows the user toapply the techniques used to find
relevant results on networks where there is less or no signaland thus were no interesting result
should emerge.

NeAT programs are able to generate randomized networks according to three methods.

1. Node degree conservation: this approach consists in shuffling the edges, each node
keeping the same number of neighbors as in the original graph.

2. Node degree distribution conservation: in which the global distribution of the node
degree is conserved but each node presents a different degree than in the original graph.

3. Erdos-Renyi randomization: where edges are distributed between pairs of nodes with
equal probability.

6.2 Quantitative assessment of a clustering algorithm

6.2.1 Study case

In this demonstration, we will use the approach developped in [?] where we evaluated the
performances of different graph clustering algorithms. Graph clustering algorithms allow to
retrieve in a graph the groups of nodes that contain more connections between them than with
the rest of the nodes of the graph. Clustering algorithms are often used in biology in order to
extract coherent groups of nodes from networks (complexes detection (e.g. see [?, ?, ?, ?]),
protein families detection [?], co-expressed genes detection in co-expression networks(e.g see
[?]), . . . ). The NeAT web server proposes theMCL (Markov Cluster algorithm) clustering
algorithm developped by Stijn van Dongen [?, ?]. To follow the command-line tools instruc-
tions, you should have MCL installed on your computer (available athttp://micans.org/mcl/ ).
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MCL simulates a flow on the graph by calculating successive powers of the associated
adjacency matrix. At each iteration, aninflation stepis applied to enhance the contrast between
regions of strong or weak flow in the graph. The process converges towards a partition of the
graph, with a set of high-flow regions (the clusters) separated by boundaries with no flow. The
value of theinflation parameterstrongly influences the number of clusters. According to [?],
the optimal inflation value for clustering protein interaction networks is 1.8.

We will use an artificial interaction network created from the complexes annotated in the
MIPS database by creating an edge between all the nodes belonging to the same complex [?].
This network contains 12262 edges between 1095 nodes. We will then use the MCL clustering
algorithm on this network, on a little altered network, on a highly altered network and finally
on a randomized network.

We will then compare these clusters to the MIPS complexes andestimate how well MCL
can retrieve protein complexes from a protein-protein interaction and the influence of the noise
on the results.

In this example, we will only use random alteration, i.e., the edges that are removed are
randomly chosen. This is done to mimick what happens really in biological experiments
where some inter-relationships between the nodes (genes, proteins, metabolites, . . . ) may not
be discovered (false negatives) or are erroneously discovered (false positives). However the
alter-graph program also allows to alterate the network with targeted attack on user-selected
nodes. In their study, Spirin and Mirny [?] showed the affect of node targeted attacks on
clustering results.

6.2.2 Protocol for the web server

Dataset download

Go on the demo dataset web page.http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/
and download the MIPS complex network file (complexes_rm_00_ad_00.tab) and the com-
plexes (mips_complexes.tab).

Network alteration

1. In theNeATmenu, select the commandnetwork alteration .

2. In theUpload graph from filetext area, load the filecomplexes_rm_00_ad_00.tabcon-
taining the MIPS complexes network that you just downloaded.

3. In theedges to addtext area, enter 10%.

4. In theedges to removetext area, enter 10%.

5. Click on the buttonGO.

6. Right click on the resulting file and save it with namecomplexes_rm_10_ad_10.tab.

Re-do the this alteration procedure using 50% of edges removal and 100% of edges
addition. Save the resulting file with namecomplexes_rm_50_ad_100.tab.
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Network randomization

1. In theNeATmenu, select the commandnetwork randomization .

2. In theUpload graph from filetext area, load the filecomplexes_rm_00_ad_00.tab.

3. Select theNode degree conservationrandomization type.

4. Click on the buttonGO.

5. Right click on the resulting file and save with namecomplexes_rm_00_ad_00_random.tab.

Networks clustering and clustering assessment

1. In theNeATmenu, select the commandgraph-based clustering MCL.

2. In theUpload graph from filetext area, load the filecomplexes_rm_00_ad_00.tab.

3. Click on the buttonGO. You should now obtain a link to the clustering results and the
distribution of the sizes of the different clusters.

4. In theNext steppannel, click on the buttonCompare these clusters to other clusters.

5. In theUpload reference classes from filetext area, load themips_complexes.tabfile.

6. Choose thematrix fileoutput format

7. Click on the buttonGO. You now obtain a contingency table, i.e, a table withN rows and
M columns (N being the number of MIPS complexes andM, the number of clusters).
Each cell contains the number of protein common to one complex and one cluster.

8. To calculate some statistics on this contingency table, click on thecontingency-table
statisticsbutton in theNext steppannel.

9. Thecontingency-statsform appears. As the contingency table is already uploaded,just
lick on theGO button.

10. Save the resulting file under namecontigency_stats_rm_00_ad_00.tab

Repeat these steps forcomplexes_rm_10_ad_10.tab, complexes_rm_50_ad_100.taband
complexes_rm_00_ad_00_random.taband save the resulting files under the namesconti-
gency_stats_ad_10_rm_10.tab, contigency_stats_ad_50_rm_100.tab, contigency_stats_ad_00_rm_00_random.tab
respectively.
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6.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT distribution, you can use the programs
random-graph andalter-graph on the command-line. This requires to be familiar with the
Unix shell interface. If you don’t have the stand-alone tools, you can skip this section and read
the next section (Interpretation of the results).

We will now describe the use ofrandom-graph , alter-graph , compare-classesandcontingency-
stats as command line tools. For this tutorial, you need to have theMCL program installed.

Start by going on the demo dataset download web page.http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/
and downloading the MIPS complex network file (complexes_rm_00_ad_00.tab) and the
complexes (mips_complexes.tab).

Network alteration

1. Go in the directory where you downloaded the file.

2. Use the following commands to alter the graph. Note that MCLis not an RSAT / NeAT
program and thus cannot treat RSAT comments lines (starting with “#” or with “;”). We
thus have to suppress them in the command.

alter-graph -v 1 -i complexes_rm_00_ad_00.tab \
-rm_edges 10% -add_edges 10% \
| cut -f 1,2 | grep -v ’;’ > complexes_rm_10_ad_10.tab

Re-use this command, but modify the percentage of removed (-rm_edges 50%) and
added edges (-add_edges 100%). Save the resulting file with namecomplexes_rm_50_ad_100.tab.

Network randomization

1. Use the following commands to randomize the graph by shuffling the edges. The node
degrees will be conserved.

random-graph -v 1 -i complexes_rm_00_ad_00.tab \
-random_type node_degree \
| cut -f 1,2 | grep -v ’;’ > complexes_rm_00_ad_00_random.ta b

Networks clustering and clustering assessment

1. Use the following commands to apply MCL on the network

mcl complexes_rm_00_ad_00.tab \
--abc -I 1.8 -o complexes_rm_00_ad_00_clusters.mcl

2. Convert the cluster file obtained with MCL with the programconvert-classesinto a file
that is readable by NeAT / RSAT (two column cluster file).
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convert-classes -i complexes_rm_00_ad_00_clusters.mcl
-from mcl -to tab -o complexes_rm_00_ad_00_clusters.tab

3. Compare the obtained clusters to the MIPS complexes with the programcompare-
classes

compare-classes -q complexes_rm_00_ad_00_clusters.tab \
-r mips_complexes.tab \
-matrix QR \
-o complexes_rm_00_ad_00_clusters_cc_complexes_matri x.tab

4. Study the obtained matrix with thecontingency-statsprogram

contingency-stats -i complexes_rm_00_ad_00_clusters_c c_complexes_matrix.tab \
-o contigency_stats_ad_00_rm_00.tab

Repeat these steps forcomplexes_rm_10_ad_10.tab, complexes_rm_50_ad_100.taband
complexes_rm_00_ad_00_random.taband save the resulting files under the namesconti-
gency_stats_ad_10_rm_10.tab, contigency_stats_ad_50_rm_100.tab, contigency_stats_ad_00_rm_00_random.tab
respectively.

6.2.4 Interpretation of the results

We will now compare the performances of MCL when applied to networks containing an
increasing proportion of noise or no signal at all.

Files description

Randomized network As the real MIPS complexes network, this randomized network
contains 12262 edges between 1095 nodes. With our parameterchoice, no edge should be
duplicated. However, as inrandom-graph the iterative process designed to avoid duplicated
edges may not be totally efficient, some duplicated edges maysubsist in the randomized net-
work.

Altered networks This file is a classical NeAT tab-delimited edge list. However, there is
a fifth column that indicates whether the edge comes from the original graph (original) or was
added randomly (random).

• As the MIPS complex newtwork, the network with 10% of added and removed edges
contains 12262 edges between 1095 nodes, which is logical aswe removed and added
the same number of edge (in this case 1226).

• The network with 100% of added edges (+ 12262 edges) and 50% of removed edges (-
6131 edges) contains 18393 edges between 1095 nodes. This graph contains thus more
noisy than relevant edges.
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Contingency table See the previous chapter (Graph clustering) for a complete description
of a contigency table.

Contingency table metrics A list of metrics and their value. These will be described in
the next section.

Metrics description

Sensitivity, Positive predictive value and geometric accur acy See the previous
chapter (Graph clustering) for a complete description of a contigency table.

Score comparaison

The table summarizes the kind of values that should be obtained for the metrics described in
the previous section. As the alteration and the randomization procedure are random processes,
you should not obtain exactly the same results.

# true ad10 / rm10 ad100 / rm50 random
ncol 125 114 713 361
nrow 220 220 220 220
mean 0.0569 0.0624 0.00998 0.0197
Sn 0.998 0.985 0.418 0.291
PPV 0.884 0.836 0.867 0.459
acc 0.941 0.91 0.642 0.375
acc_g 0.939 0.907 0.602 0.365
Sn_w 0.997 0.992 0.502 0.157
PPV_w 0.621 0.62 0.688 0.244
acc_g_w 0.787 0.785 0.588 0.196
sep_r 0.567 0.507 0.676 0.192
sep_c 0.998 0.979 0.208 0.117
sep 0.752 0.704 0.375 0.15

As expected, the value of the global parameters, the geometric accuracy (row acc_g), the
weighted geometric accuracy (row acc_g_w) and the separation (row sep) decrease drastically
as the network contain less and less relevant information.

We can observe that the sensitivity is more affected than thePPVand that the complex wise
separation (sep_r) is more affected than the cluster wise separation. This is due to the fact that
by increasing the noise, MCL increases the number of small sized clusters (ncol) too and, as
we saw in previous section, this has an impact on the sensitivity.

Note that with a random graph, we would have a separation of 0.15 but an unweighted
geometric accuracy of 0.365 which is far from being 0. The relatively good performances of
MCL on the highly altered graph must thus be taken with cautionas the gain in performances
is only of 23%. This illustrates the interest of using negative controls.
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7 Path finding

7.1 Introduction

Given a biological network and two nodes of interest, the aimof k shortest path finding is to
enumerate the requested number of shortest paths connecting these nodes ordered according
to their weight. For instance, we might look for all shortestpaths between a receptor and a
DNA binding protein to predict a signal transduction pathway from a protein protein interac-
tion network. Another example is the prediction of a metabolic pathway given two reactions
or compounds of interest and a metabolic network.
A problem encountered in many biological networks is the presence of so-called hub nodes,
that is nodes with a large number of connections. For example, in bacterial protein-protein
interaction networks, CRP has the role of a hub node because it interacts with many targets.
Likewise, in metabolic networks, compounds such as ADP or water are hubs, since they are
generated and consumed by thousands of reactions.
The shortest path very likely traverses the hub nodes of a network. It depends on the bio-
logical context, whether this behaviour is desired or not. In metabolic networks, we are less
interested in paths going through water or ADP, since those paths are often not biological rel-
evant. For instance, we can bypass the glycolysis pathway byconnecting glucose via ADP
to 3-Phosphoglycerate. To avoid finding irrelevant pathways like this one, we tested differ-
ent strategies and concluded that using a weighted network gave the best results [?],[?]. In
a weighted network, not the shortest, but the lightest pathsare searched. Hub nodes receive
large weights, making them less likely to appear in a solution path.
Whether weights are used and how they are set has to be decided depending on the biological
network of interest.

In this chapter, we will demonstrate path finding on the example of metabolic networks.
We will work on a network assembled from all metabolic pathways annotated for the yeast
S. cerevisiaein BioCyc (Release 10.6) [?]. We will also show the influence of the weighting
scheme on path finding results.

7.2 Computing the k shortest paths in weighted
networks

7.2.1 Study case

The yeast network constructed from BioCyc data consists of 1,185 nodes and 2,656 edges. It
has been obtained by unifying 171 metabolic pathways. Note that this network is bipartite,
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which means that it is made up of two different node types: reactions and compounds. An
edge never connects two nodes of the same type. For the tutorial, we choose to represent
the metabolic data as undirected network. Note that higher accuracies can be achieved by
representing metabolic data by directed networks that contain for each reaction its direct and
reverse direction, which are treated as mutually exclusive. See the advanced options of the
Pathfinder tool for mutual exclusion of reactions in directed metabolic networks.

We will recover the heme biosynthesis II pathway given its start and end compound, namely
glycine and protoheme. First, we will use the "degree" weighting scheme, which penalizes
hub nodes. Second, we will infer the path using the "unit" weighting scheme and compare the
results.

7.2.2 Protocol for the web server

1. In theNeATmenu, select the commandk shortest path finding.

In the right panel, you should now see a form entitled “Pathfinder”.

2. Click on the buttonDEMO1.

The form is now filled with the BioCyc demo network, and the parameters have been
set up to their appropriate value for the demonstration. At the top of the form, you can
read some information about the goal of the demo, and the source of the data.

3. Click on the buttonGO.

The computation should take no more than two minutes. When it is finished, a link to
the results should appear.

4. Click on the link to see the full result file.

It lists a table of all paths found for the requested rank number (5 by default). You can
also specify another type of output, for instance a network made up of all paths found.
Vary the parameterOutput typefor this.

To see how results change with modified weight, you can repeatsteps 1 and 2. Before
clicking onGO, choose “unit weight” asWeighting schemeand set theRank to 1. Continue
as described above. You will obtain another paths table thanbefore.

7.2.3 Protocol for the command-line tools

This section assumes that you have installed the RSAT/NeAT command line tools.
You can find the demo network Scer_biocyc.tab in $RSAT/public_html/demo_files.
Type the following command to enumerate paths up to the 5th rank in the weighted network:

java -Xmx800m graphtools.algorithms.Pathfinder -g Scer_ biocyc.tab -f tab -s gly -t protoheme

To find paths in the unweighted network, type:

java -Xmx800m graphtools.algorithms.Pathfinder -g Scer_ biocyc.tab -f tab -s gly -t protoheme
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7.2.4 Interpretation of the results

Degree weighting scheme

First, we run Pathfinder with degree weighting scheme, whichis the default weighting scheme
of the demo. This weighting scheme sets the weights of compound nodes to their degree and
of reaction nodes to one. The first ranked path obtained should look like this:

GLY 5-AMINOLEVULINIC-ACID-SYNTHASE-RXN 5-AMINO-LEVULINATE PO RPHOBILSYNTH-
RXN PORPHOBILINOGEN OHMETHYLBILANESYN-RXN HYDROXYMETHYLBILANE
UROGENIIISYN-RXN UROPORPHYRINOGEN-III UROGENDECARBOX-RXN COPRO-
PORPHYRINOGEN_III RXN0-1461 PROTOPORPHYRINOGEN PROTOPORGENOXI-RXN
PROTOPORPHYRIN_IX PROTOHEMEFERROCHELAT-RXNPROTOHEME

This path recovers very well the annotated heme biosynthesis II pathway.

Unit weighting scheme

We repeated path finding on the same network but used the unit weighting scheme, which sets
all node weights to one. This is equivalent to path finding in an unweighted network. We
obtain a large number of paths of first rank, among them this one:

GLY GLUTATHIONE-SYN-RXN ADP PEPDEPHOS-RXN PROTON PROTOHEMEFERROCHELA
RXN PROTOHEME

This path deviates strongly from the heme biosynthesis II pathway annotated in BioCyc. It
contains two hub nodes: ADP and PROTON.

7.3 Summary

To sum up: path finding can predict pathways with high accuracy if an appropriate weighting
scheme is applied to the network of interest. Our metabolic example shows that the heme
biosynthesis II pathway is accurately predicted when usinga weighted network and not found
at all when using an unweighted network. The take home message is that in order to use
Pathfinder on biological networks, weights have to be carefully adjusted.

7.4 Strengths and Weaknesses of the approach

7.4.1 Strengths

The strength of the approach is that for a given network and appropriate weighting scheme,
pathways can be discovered with high accuracy. These pathways may be known or novel path-
ways. Other methods such as pathway mapping are unable to recover entirely novel pathways
or pathways which are combinations of known pathways.
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7.4.2 Weaknesses

The weakness is that the weighting scheme has to be optimizedfor the biological network of
interest.

7.5 Troubleshooting

1. No path could be found.

Make sure that your start and end nodes are present in your network of interest. If no
path could be found, none of the end nodes is reachable from the start nodes, thus no
path exists. For big graphs and long waiting time, there is the possibility that the pre-
processing step of REA, namely to compute the shortest paths from the source to all
nodes with Dijkstra, was not finished before the server timeout. In this case, a path
might exist but could not be detected due to the timeout.

2. An out of memory error occurred.

When searching for paths with the "unit" weighting scheme in large networks, there
might be a large number of possible paths for each requested rank. Although REA has
a memory-efficient way to store paths with pointers, there isa limit for the number of
paths that can be hold in memory. Reduce the number of requested paths or the size of
the graph or use another weighting scheme.
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8 Metabolic path finding

8.1 Introduction

The metabolic pathfinder enumerates metabolic pathways between a set of start nodes and a
set of end nodes, where start and end nodes may be compounds, reactions or enzymes (which
are mapped to the reactions they catalyze). When choosing theright parameters (which are
set by default), the metabolic pathways found are with high probability biochemically relevant.

The accuracy of path finding in metabolic networks (as in other biological networks) is di-
minished by the presence of hub nodes (highly connected compounds such as ATP, NADPH
or CO2) in the network. Path finding algorithms will traverse the network preferentially via
the hub nodes, thereby inferring biochemically irrelevantpathways. Different strategies have
been devised to overcome this problem. Arita introduced themapping and tracing of atoms
from substrates to products [?]. This strategy is also applied in the Pathway Hunter Tool avail-
able at http://pht.tu-bs.de/PHT/. Other tools rely on rules to avoid hub nodes, e.g. the pathway
prediction system at UMBBD (http://umbbd.msi.umn.edu/predict/). Didier Croes et al. used
weighted graphs to avoid highly connected nodes [?],[?]. The functionality of Didier Croes’
tool is covered by the metabolic pathfinder (with the weighted reaction network).

Metabolic pathfinder relies on a mixed strategy: On the one hand, it makes use of weighted
graphs to avoid irrelevant hub nodes and on the other hand, itintegrates KEGG RPAIR an-
notation [?] to favor for each traversed reaction main over side compounds. KEGG RPAIR
is a database that divides reactions into reactant pairs (substrate-product pairs) and classifies
the reactant pairs according to their role in the reaction. For instance, the cofac reactant pair
A00001 couples NADP+ with NADPH. Main reactant pairs connect main compounds and
should be traversed preferentially by path finding algorithms.

The KEGG RPAIR annotation is integrated by construction of the undirected RPAIR net-
work, which consists of 7,058 reactant pairs, 4,297 compounds and 14,116 edges for KEGG
version 41.0. Alternatively, two other networks are available: the directed reaction network
evaluated in [?] and an undirected reaction-specific RPAIR network, in whicheach reaction is
divided in its reactant pairs.

Note that in more recent KEGG versions, identifiers of reactant pairs start with RP instead
of A.

In this chapter, we will recover the aldosterone pathway using the RPAIR and the reaction
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network respectively. Note that the study case was carried out with data from KEGG LIGAND
version 41.0. Results might differ for more recent KEGG versions.

8.2 Enumerating metabolic pathways between
compounds, reactions or enzymes

8.2.1 Study case

Aldosterone is a human steroid hormone involved in the regulation of ion uptake in the kidney
and of blood pressure. It is synthesized from progesterone.We aim to recover the aldosterone
biosynthesis pathway by providing its start and end reaction.

8.2.2 Protocol for the web server

1. In theNeATmenu, select the entryMetabolic path finding .

In the right panel, you should now see a form entitled “Metabolic pathfinder”.

2. Click on the buttonDEMO2 located at the bottom of the form.

The metabolic pathfinder form is now filled with the start and end reaction of the aldos-
terone biosynthesis pathway. In addition, information on this pathway is displayed.

3. Click on the buttonGO.

4. The seed node selection table appears.

This table lists for each reaction the reactant pair identifier(s) associated to it. Note that
reaction R02724 is associated to two reactant pairs.

The seed node selection form allows you to select the correctamong all compounds
matching your query string in case you provided a partial compound name. If you give
KEGG compound identifiers, it displays the name of each compound. For EC numbers,
it lists associated reactions or reactant pairs. The seed node selection form also warns
you in case you provide problematic identifiers.

5. Click on the buttonGO.

The computation should take no more than one minute.

Then, a table is displayed, which lists the found paths in theorder of their weight. The
table may be sorted according to other criteria by clicking the respective column header.
Each path node is linked to its corresponding KEGG entry for easy inspection of results.

If you setOutput formatin the metabolic pathfinder form to “Graph”, you obtain an
image of the inferred pathway generated by the programdot of the graphviz tool suite
and a link to the pathway in the selected graph format.
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To see how results change with the choice of the graph, you canrepeat steps 1 and 2. In the
metabolic path finding form, select Reaction graph instead ofRPAIR graph (which is selected
by default) and follow step 3 to 5. You will notice in the seed node selection form that the
reaction identifiers are no longer mapped to reactant pairs.

8.2.3 Protocol for the command-line tools

This section assumes that you have installed the RSAT/NeAT command line tools.
The metabolic pathfinder is a web application on top of Pathfinder. You may run metabolic

path finding on command line by launching the Pathfinder command line tool on the RPAIR
and reaction networks, which are provided in the KEGG graph repository reachable from the
metabolic pathfinder manual page.

Type the following command in one line to find paths in the RPAIRnetwork:

java -Xmx800m graphtools.algorithms.Pathfinder -g RPAIR Graph_allRPAIRs_undirected.txt
-s ’A02437’ -t ’A02894’ -b -y rpairs

To repeat path finding in the reaction network, type in one line:

java -Xmx800m graphtools.algorithms.Pathfinder -g React ionGraph_directed.txt -d -f
-s ’R02724>/R02724<’ -t ’R03263>/R03263<’ -b -y con

8.2.4 Interpretation of the results

Metabolic path finding in the RPAIR network

The path of first rank does not reproduce exactly the annotated pathway. Instead, it suggests
a deviation via 21-hydroxypregnelonone, bypassing progesterone. This path might be a valid
alternative, as it appears on the KEGG map for C21-Steroid hormone metabolism in human.
One of the two second-ranked paths corresponds to the annotated pathway.

First ranked path:
A02437 (1.14.15.6)Pregnenolone A03407 (1.14.99.10) 21-Hydroxypregnenolone A00731
(1.1.1.145, 5.3.3.1) 11-Deoxycorticosterone A03469 (1.14.15.4) Corticosterone A02893 (1.14.15.5)
18-HydroxycorticosteroneA02894

Second ranked paths:
A02437 (1.14.15.6)Pregnenolone A00386 (1.1.1.145, 5.3.3.1) Progesterone A02045 (1.14.99.10)
11-Deoxycorticosterone A03469 (1.14.15.4) Corticosterone A02893 (1.14.15.5) 18-Hydroxycorticosterone
A02894

A02437 (1.14.15.6)Pregnenolone A00386 (1.1.1.145, 5.3.3.1) Progesterone A02047 (1.14.15.4)
11beta-Hydroxyprogesterone A03467 (1.14.99.10) Corticosterone A02893 (1.14.15.5) 18-
HydroxycorticosteroneA02894
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Metabolic path finding in the reaction network

The paths of first and second rank traverse a side compound, namely adrenal ferredoxin. None
of these paths is therefore biochemically valid. In the weighted reaction graph all highly
connected side compounds such as ATP and water are avoided. However, adrenal ferredoxin
is a rare side compound, thus weighting is not sufficient to bypass it.

First ranked path:
R02724< Reduced adrenal ferredoxin R03262> 18-HydroxycorticosteroneR03263>

Second ranked paths:

R02724> Oxidized adrenal ferredoxin R02726< Reduced adrenal ferredoxin R03262>
18-HydroxycorticosteroneR03263>

R02724> Oxidized adrenal ferredoxin R02725< Reduced adrenal ferredoxin R03262>
18-HydroxycorticosteroneR03263>

8.3 Summary

Metabolic path finder provides k shortest path finding in metabolic networks constructed from
KEGG LIGAND and KEGG RPAIR. The metabolic path finder is coupledwith a mirror of
the KEGG database to allow quick identification of partial compound names and to annotate
results.

8.4 Strengths and Weaknesses of the approach

8.4.1 Strengths

The metabolic path finder has the following benefits comparedto other metabolic path finding
tools:

1. It has been extensively evaluated on 55 reference pathways from three organisms.

2. It supports compounds, reactions, reactant pairs and EC numbers as seed nodes.

3. It can handle sets of start and end nodes.

8.4.2 Weaknesses

The metabolic path finding tool has the following weaknesses:

1. RPAIR does not cover all compounds in KEGG. Thus, the RPAIR network is less com-
prehensive than the reaction network.
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2. By default, the metabolic path finder cannot infer directions of reactions in pathways
because of the way the networks were constructed (being undirected or treating all re-
actions as reversible). However, custom metabolic networks may contain irreversible
reactions and it is therefore possible to infer directed pathways from custom networks.

3. The metabolic path finder can only partly infer cyclic pathways or pathways in which
the same enzymes act repeatedly on a growing chain.

8.5 Troubleshooting

1. A Parameter error occurred.

By default, the optimal parameter values are set. However, ifyou set your own values,
they might not be in the supported value range. Check the Metabolic path finder manual.

2. The seed node selection form displays the message: "You provided invalid identifier(s)!"

This occurs when you provide identifiers that do not match anyKEGG identifier, EC
number or KEGG compound name. Check your identifiers or in caseyou provided a
compound name, check whether the compound is present in KEGG.

3. The seed node selection form displays the message: "The given compound is not part of
the sub-reaction graph."

As stated in the Weaknesses section, the RPAIR network does not contain all KEGG
compounds due to incomplete coverage of the RPAIR database. Try to search paths for
this compound in the reaction network.

4. No path could be found.

This may happen in the RPAIR network because in this network reactant pairs belonging
to the same reaction exclude each other. Try the reaction-specific RPAIR network or the
reaction network instead.

5. An out of memory error occurred.

This may occur when requesting a large number of paths with the reactant subreac-
tion and compound weighting schemes set to unweighted. In general, when setting the
weighting schemes to unweighted, biochemically irrelevant paths will be returned. Use
another weighting scheme or reduce the number of requested paths to avoid this error.
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9 KEGG network provider

9.1 Introduction

KEGG network provider allows you to extract metabolic networks from KEGG [?] that are
specific to a set of organisms. In addition, you can exclude certain compounds or reactions
from these networks.

A range of tools works with KGML files. Click on “Manual -> Related tools” to see a
selection of them. KEGG network provider differs from thesetools by allowing also the
extraction of RPAIR networks and by supporting filtering of compounds, reactions and RPAIR
classes.

KEGG network provider itself has no network analysis or visualization functions, but you
can use a NeAT tool (a choice of them will appear upon termination of network construction)
or any other graph analysis tool that reads gml, VisML or dot format for these purposes.

For visualization of KEGG networks, you can use iPATH [?], KGML-ED [?] or metaSHARK
[?]. Yanasquare [?] and Pathway Hunter Tool [?] offer organism-specific KEGG network con-
struction in combination with analysis functions. With [?], you can construct KEGG metabolic
networks in R.

It should be noted that KEGG annotators omitted side compounds in the KGML files. Thus,
certain molecules (such as CO2, ATP or ADP) might be absent from the metabolic networks
extracted from these files.

It is also worth noting that constructing metabolic networks from KGML files produces
networks of much lower quality than those obtained by manualmetabolic reconstruction. In
manual reconstruction, several resources are taken into account, such as the biochemical liter-
ature, databases and genome annotations (e.g. [?]). This is why the metabolism of only a few
organisms has been manually reconstructed so far.

In automatically reconstructed networks, reactions mightnot be balanced and compounds
might occur more than once with different identifiers (see e.g. [?] for annotation problems in
KEGG). For the purpose of path finding the automatically reconstructed metabolic networks
may still be of interest.
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9.2 Construction of yeast and E. coli metabolic
networks

9.2.1 Study case

Our study case consists in the construction of two metabolicnetworks: one for five yeast
species and the other forEscherichia coli K-12 MG1655. We will compare path finding results
obtained for these two networks for a metabolic reference pathway (Lysine biosynthesis).

9.2.2 Protocol for the web server

1. In theNeATmenu, select the entryDownload organism-specific networks from KEGG.

In the right panel, you should now see a form entitled “KEGG network provider”.

2. Click on the buttonDEMO located at the bottom of the form.

The KEGG network provider form has now loaded the organism identifiers of five yeast
species. As explained in the form, the species concerned are: Saccharomyces bayanus,
Saccharomyces mikatae, Saccharomyces paradoxus, Schizosaccharomyces pombeand
Saccharomyces cerevisiae.

3. Click the checkboxdirected networkto construct a directed metabolic network.

4. Click on the buttonGO.

The network extraction should take only a few seconds. Then,a link to the extracted
network is displayed. In addition (for formatstab-delimitedandgml), the Next step
panel should appear.

5. Click on the button “Find metabolic paths in this graph” in the Next step panel. This
button opens the Metabolic pathfinder with the yeast networkpre-loaded.

6. Enter C00049 (L-Aspartate) as source node and C00047 (L-Lysine) as target node.

7. In sectionPath finding options, set the rank to 1. We are only interested in the first
rank.

8. In sectionOutput , selectGraphas output with “paths unified into one graph”

9. Click GO. The seed node selection form appears to confirm our seed nodechoice.

10. ClickGO. After no more than one minute of computation, the graph unifying first rank
paths between L-aspartate and L-lysine should appear. You can store the graph image
on your machine for later comparison.

Repeat the previous steps, but instead of selectingDEMO in the KEGG network provider
form, enter eco in the organisms text input field. Make sure toselectdirected networkin the
KEGG network provider form, then follow steps 4 to 10 as described above.
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9.2.3 Protocol for the command-line tools

The command-line version of this tutorial is restricted to theE. coliandS. cerevisiaemetabolic
networks. It is assumed that you have installed the requiredcommand-line tools.

1. First we construct the directed metabolic network ofE. coli.

java graphtools.util.MetabolicGraphProvider -i eco -d
-o eco_metabolic_network_directed.txt

2. Then, we search for the lightest paths in this network as follows:

java graphtools.algorithms.Pathfinder
-g eco_metabolic_network_directed.txt
-f tab -s C00049 -t C00047
-r 1 -d -y con -b -T pathsUnion -O gml
-o lysinebiosyn_eco.gml

3. To visualize the inferred pathway, you may open lysinebiosyn_eco.gml in Cytoscape or
in yED.

4. We proceed by constructing the metabolic network ofS. cerevisiae:

java graphtools.util.MetabolicGraphProvider
-i sce -d -o sce_metabolic_network_directed.txt

5. Then, we enumerate paths between L-aspartate and L-lysine in it:

java graphtools.algorithms.Pathfinder
-g sce_metabolic_network_directed.txt
-f tab -s C00049
-t C00047 -d -r 1 -y con -b -T pathsUnion -O gml
-o lysinebiosyn_sce.gml

6. As before, we can visualize the lysinebiosyn_sce.gml filein a graph editor capable of
reading gml files (such as yED or Cytoscape).

9.2.4 Interpretation of the results

After having executed the steps of this tutorial, you shouldhave obtained two pathway images:
one for the yeast network and one for theE. coli network. Both pathways differ quite substan-
tially. If we compare each of these pathways with the respective organism-specific pathway
map in KEGG, we notice that the pathway inferred for theE. coli network reproduces the
reference pathway correctly.

The yeast pathway deviates from theS. cerevisiaeKEGG pathway map from L-aspartate to
but-1-ene-1,2,4-tricarboxylate, but recovers otherwisethe reference pathway correctly (ignor-
ing the intermediate steps 5-adenyl-2-aminoadipate and alpha-aminoadipoyl-S-acyl enzyme
associated to EC number 1.2.1.31).
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For comparison purposes, we have chosen the same start and end compound for both
metabolic networks, but it should be noted that the reference lysine biosynthesis pathway
in S. cerevisiaestarts from 2-oxoglutarate.

The lysine biosynthesis KEGG map for yeast is available at:
http://www.genome.ad.jp/dbget-bin/get_pathway?org_n ame=sce&mapno=00300

The one forE. coli is available at:
http://www.genome.ad.jp/dbget-bin/get_pathway?org_n ame=eco&mapno=00300

9.3 Summary

The study case demonstrated that different organisms may employ different metabolic path-
ways for the synthesis or degradation of a given compound. For this reason, it is useful to be
able to construct metabolic networks that are specific to a selected set of organisms.

9.4 Troubleshooting

1. An empty graph (with zero nodes and edges) is returned. Make sure that the entered
organism identifiers are valid in KEGG. They should consist of three to four letters
only. If in doubt, check in the provided KEGG organism list.
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10 Pathway inference

10.1 Introduction

The idea of pathway inference is to connect a given set of seednodes in the network and
thereby extracting a sub-network that is optimal accordingto certain criteria (e.g. minimal
weight or maximal relevance).
In the context of biological networks, the goal is to obtain avalid pathway for a set of biologi-
cal entities of interest, e.g. genes from microarray data orcompounds from metabolomic data.
For instance, genes whose products participate in the same metabolic pathway are often co-
expressed or grouped together in operons or regulons. We maytry to reconstruct this metabolic
pathway by associating the gene products to relevant reactions and connecting these reactions
in a metabolic network. The resulting sub-network may be a known metabolic pathway or an
unknown pathway consisting of known pathways or known reactions and compounds. In the
context of microarray data, pathway inference from a set of co-expressed genes may predict
which pathways are up- or down-regulated.

10.2 Inferring a pathway for a set of co-expressed
genes

As an example, we take the case study discussed in [?]. In this case study, a pathway is
assembled from genes in the cell-cycle regulated MET cluster [?]. Results described in this
tutorial have been obtained with KEGG RPAIR version 49.0.

10.2.1 Protocol for the web server

1. In theNeATmenu, select the entryPathwayinference.

2. Copy-paste the gene names below in the seed nodes text field:
Met3
Met14
Met16
Met5
Met10
Met17
Met6
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3. Select "Genes/Enzymes" as identifier type.

4. In the text field "Genes are from organism" type sce, the KEGGabbreviation forSac-
charomyces cerevisiae.

5. Push theGO button.

The result of the mapping of the given genes to KEGG RPAIRS (reactant pairs, [?]) is dis-
played. Since more than one reactant pair is associated to each gene, we end up with a group
of reactant pair groups. Note that each gene (except for Met5) is associated to one or more
EC numbers, each of which has been mapped to its corresponding reactions in KEGG, which
have in turn be mapped to their corresponding reactant pairs.

You can now select how to deal with the groups. This is a sensitive choice that strongly
affects the inferred pathway and which depends on your data.In general, if you keep the
original groups, you assume implicitely that only a subset of the reactions associated to the
given gene will be active in the pathway. If you think that allreactions associated to a gene
might be active, choose "Treat each group member as a separategroup" (the default treatment).

For the study case, we recommend you to keep the default.
PushGO. In a few minutes, the result page will be displayed.

10.2.2 Protocol for the command-line tools

This section assumes that you have installed the RSAT/NeAT command line tools.
Pathwayinference is a web application that calls the pathwayinference web service. You

can use the Pathwayinference command line tool on the networks provided in the network
repository (check the Pathwayinference Manual for this) toreproduce results obtained with
the web application on command line. Note that the mapping ofgenes to reactions and group
treatment can only be done via the web application.

Type the following command in one line:

java -Xmx800m graphtools.algorithms.Pathwayinference - g RPAIRGraph_allRPAIRs_undirected.txt
-s ’RP00016#RP00182/RP00647/RP00561/RP00143#RP00960# RP04049/RP00096#RP00168#
RP04532/RP00003/RP00446/RP00946#RP00857/RP04474/RP0 0050#RP04533’
-f flat -b -y con -P -u -x 0.05

10.2.3 Interpretation of the results

The resulting sub-network contains a large part of the pathway given in [?]. Note that the
chosen algorithm (kWalks in combination with Takahashi & Matsuyama) may return one from
a set of solutions, so your solution may deviate from the one described here. Despite of this
disadvantage, Takahashi & Matsuyama in combination with kWalks is the default algorithm,
because it performed best in our evaluation. If your result deviates from the one described
below, repeat the inference with the algorithm "repetitive REA".
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The pathway described in the study case unites the sulfur assimilation and methionine
biosynthesis pathways. It consists of the following steps:
Sulfate 2.7.7.4 Adenylyl sulfate 2.7.1.25 3’phosphoadenylylsulfate 1.8.99.4 sulfite 1.8.1.2 sul-
fide (alias hydrogen sulfide) 4.2.99.10 Homocysteine 2.1.1.14 L-Methionine

The matching parts of the inferred pathway are:

RP000163’-Phosphoadenylyl sulfateRP00446Adenylyl sulfateRP00960
and
RP00960SulfiteRP00168Hydrogen sulfide RP01406 L-HomocysteineRP00096
Seeds are printed in bold.

In addition, the inferred pathway contains a branch that leads from 3’-Phosphoadenylylselenate
to Adenylylselenate. This branch mirrors sulfur incorporation, but instead of sulfur, selenium
is incorporated.

The presence of both the selenium and sulfur incorporation pathways in the inferred sub-
network reflects the well-known fact that selenium might replace sulfur in metabolism.

This example demonstrated that given a set of differentially expressed genes from micro-
array data and a metabolic network, it is possible to infer a metabolic pathway that might be
affected by altered expression of the query genes.

10.3 Summary

Pathwayinference allows extraction of sub-networks from larger networks given a set of seed
nodes. The web application is tailored to metabolic networks, but non-metabolic networks can
be processed as well.

10.4 Strengths and Weaknesses of the approach

10.4.1 Strengths

1. Sub-network extraction can be applied to any biological network.

2. It can discover unknown pathways consisting of known components.

3. It can be fine-tuned to favor certain nodes. For instance, in a global metabolic network,
reactions/compounds known to occur in certain species might receive a weight much
lower than other nodes, to favor extraction of species-specific sub-networks.

4. Groups of seed nodes can be specified to reflect AND/OR relationships between seeds.

5. The web application allows to infer metabolic pathways inmetabolic networks extracted
from the two major metabolic databases KEGG [?] and MetaCyc [?].
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6. For metabolic networks from MetaCyc or KEGG, the web application supports com-
pounds, reactions, reactant pairs, EC numbers or gene identifiers as seed nodes and
handles the required mapping of these seeds to reactions, reactant pairs and compounds.

7. For metabolic networks from MetaCyc or KEGG, the web application performs a map-
ping of the inferred sub-network to known pathways stored MetaCyc or KEGG respec-
tively.

8. Metabolic sub-network extraction has been validated on 71 metabolic pathways ex-
tracted from MetaCyc.

10.4.2 Weaknesses

1. In general, the accuracy of pathway inference depends on the quality of the given net-
work and the number of seeds available.

2. Spiral-shaped metabolic pathways such as fatty acid biosynthesis can only be partly
inferred.

3. In the densely connected region of metabolic networks, metabolic pathway inference
cannot well distinguish alternative pathways without a large number of seed nodes.

4. The algorithms are too time-consuming to estimate p-values by computing a score dis-
tribution (where the score would be the sub-network weight)for randomly chosen seed
nodes on the fly. We envisage to pre-compute these distributions for the pre-loaded
networks.

5. Only one sub-network is suggested. We envisage to computea list of them ranked by
their weight.

10.5 Troubleshooting

1. Pathwayinference parameter error.

You provided insufficient or invalid parameters. Please check the pathwayinference
manual page.

2. You did not specify enough valid seed node groups! Pathwayinference needs at least
two valid seed node groups.

For the pre-loaded metabolic networks from KEGG and MetaCyc,each seed is mapped
to data (e.g. compound/reaction identifiers, EC numbers) from these two databases. If
the seeds do not map anything, they are considered to be invalid. At least two valid seed
groups are needed to infer a network.

3. The node with identifier ID is not part of the input graph.

Make sure that your input network contains the node with the given identifier.
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4. Pathwayinference failed to extract a subgraph.

None of the seed node groups could be connected to any other seed node group. Each
might belong to a separate component of the input network or mutual exclusion (in
RPAIR networks) might prevent the connection of the seed groups.
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11 Recapitulative exercises
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