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Warning

This tutorial is in construction. The current version onbvers a very small fraction of the
NeATtools. For the tools not covered yet by the tutorial, IEMO buttons already give
some hints about typical cases of utilization. We intendeeetbp further those tutorials very
soon.



1 Introduction

Since a few years, large scale biological studies producge lamounts of data about net-
works of molecular interactions (protein interactionsngeegulation, metabolic reactions,
signal transduction). The integration of these data setdeacombined to acquire a global
view of the pieces that, altogether, contribute to the cexipl of biological processes. High-
throughput data is however notoriously noisy and inconepland it is important to evaluate
the quality of the different pieces of information that aa&en in consideration for building
higher views of biological networks.

An important effort will be required to extract reliable anmation from the ever-increasing
ocean of high-throughput data. This will require the uéition of powerful tools that enable
us to apply statistical analysis on large graphs. For thipgae, we developed thidetwork
Analysis Tools(NeAT), as set of tools performing basic operations on networkiscarsters.

The tools can be used in three ways:

1. Web server interface
http://rsat.ulb.ac.be/neat/

The Web interface gives a convenient and intuitive accesise@ools, and allows you
to bring your data sets through some typical analysis workdlm order to extract the
best of it.

2. Stand-alone application

http://rsat.ulb.ac.be/rsat/distrib/

Most of the tools are freely available to academic userralatg to a licence for non-
commercial and non-military usage.

The license covers both the Regulatory Sequence Analysis TRSAT) and the Net-
work Analysis Tools NeAT). It can be downloaded from the RSAT Web site.

3. Web services

In addition, people having computer skills can also use beegaols via a Web services
interface, in order to integrate them in automatic work-8owo obtain information on
the Web services, connect thieATweb server, and in the left menu, selédbrma-
tion - Web services


http://rsat.ulb.ac.be/neat/
http://rsat.ulb.ac.be/rsat/distrib/

2 Network visualization and format
conversion

2.1 Introduction

2.1.1 Network visualization

To help the scientists apprehending their interest netwbiksometimes very useful to visu-
alize them. Networks are generally represented by a settef{doof boxes) which represents
its nodes that are linked via lines (the edges) or arows (artise case of directed graphs).
The nodes and the edges may present a label and / or a weighinobe label is generally
indicated in the node box and the edge label is often placedenline.

NeAT contains some facilities to represent networks. Itams its own visualization soft-
ware (display-graph) that will be described in the follogirMoreover, it allows the conver-
sion of the graph into formats that may be used by some v&atain tools likeCytoscape
([?], http://www.cytoscape.org ), YED (http://www.yworks.com/products/yed/ )G
VISANT ([?], http://visant.bu.edu/ ).

Hereafter, we describe briefly some of the major formats @megraph description.

2.1.2 Graph formats

Incompatibility between file formats is a constant problembioinformatics. In order to
facilitate the use of the NeAT website, most of our tools supgeveral among the most
popular formats used to describe networks.

* The tab-delimited format is a convenient and intuitive wayencode a graph. Each
row represents an arc, and each column an attribute of thisTae two columns fields
are the source and target nodes. If the graph is directedsdinee node is the node
from which the arc leaves and the target node is the node tohathie arc arrives.
Logically, in undirected graph, the columns containing sberce and the target node
may be inverted. Some additional arc attributes (weightellacolor) can be placed
in pre-defined columns. Orphan nodes can be included byfgperia source node
without target. The tooPathfinder extends this format by supporting any number of
attributes on nodes or edges as well as the color, the labethenwidth of nodes and
edges.

* A GML file is made up of nested key-value pairs. The most populatgealitors sup-
port GML as input format (like Cytoscape and yED). More infation on this format
can be found atttp://www.infosun.fim.uni-passau.de/Graphlet/GML/


http://www.cytoscape.org
http://www.yworks.com/products/yed/
http://visant.bu.edu/
http://www.infosun.fim.uni-passau.de/Graphlet/GML/

» TheDOT format is a plain text graph description language. DOT filas loe loaded in
the programs of the suite GraphViat{p://www.graphviz.org/ ). Itis a simple
way of describing graphs in a human- and computer-readabiestt. Similarly to GML,
DOT supports various attributes on nodes (i.e. color, wiibel).

* VisML is the XML format required by VisANT, a very light butqwerful visualisation
tool.

» Several tools also accept adjacency matrices as input.dfacency matrix is &N X N
table (withN the number of nodes), where a c]l, j] indicates the weight of the edge
between nodesand | (or 1 if the graph is unweighted).

2.2 Visualisation of a co-expression network

2.2.1 Study case

In this demonstration, we will show you how to visualize awmk using some popular net-
work visualization tools. This network we will study cortsiis the top scoring edges of the
yeast co-expression network included in the integrativalaslese Stringd]. This undirected
weighted networks contains 537 nodes representing gewle43@i edges. An edge between
two nodes means that they are co-expressed. The weightssegrat which level both genes
are co-expressed. We will explain how to display this nekwith NeAT, Cytoscape, yED
and VisANT. As Cytoscape and yED are not online tools, we willyalescribe their utiliza-
tion in the command-line section.

2.2.2 Protocol for the web server
Format conversion and layout calculation

1. IntheNeATmenu, select the commariarmat conversion / layout calculation.
In the right panel, you should now see a form entitled “cotrgeaph”.

2. Click on the linkDEMO.

The form is now filled with a graph in the tab-delimited formetd the parameters have
been set up to their appropriate value for the demonstraitien the network will be
converted from tab-delimited to GML format, the source nodamn is 1, the target
column is 2 and the weight column is 3.

The optionCalculate the layout of the nodes (only relevant for GML otigmay also
be chosen, otherwise the nodes will all be in diagonal andebelting graphic will not
be very instructive.

If the edges present a weightpnvert-graph is able to represent the weight of the
edges by computing a color gradient proportional to edgghisiand coloring the edges
according to it. There are five different color gradients ueylred, green, grey and


http://www.graphviz.org/

yellow to red. The darker (or the more colored) it is, the leigthe weight. Moreover
convert-graph can also change the width of the edge proportionnally to egyt.
To this, we must choose a color gradient for thége color intensity proportional to
the weightand the optionEdge width proportional to the weight of the edaeist be
checked (which is automatically the case with the demotisira

3. Click on the buttorGO.

The resulting graph in GML format is available as an HTML linRight clink on the
link and save it with namstring_coexpression.gml

Visualization using NeAT

1. IntheNext Steppannel, click orDisplay the graph

The form ofdisplay-graph is displayed. By default, the figure output format is jpeg,
change it to png which gives a better resolution. NeAT alkmalhe postscript format.

2. UncheckCalculate the layout of the nodes (mandatory for all inputi@rexcept GML)
asconvert-graph already computed it.

3. CheckEdge width proportional to the weight of the edges

4. Click on theGO button.

The figure is available by clicking on the HTML link. Clickingtae link leads to a
static figure representing the network.

Visualization using VisSANT
1. After the steg-ormat conversion and layout calculatipdick on theLoad in ViSANT
A page is displayed. Three links are available
* Alink to the graph in the format you obtained it froconvert-graph (here GML).
* Alink (VisANT logo) to the VisANT applet
» Alink to the graph in VisML (the input format of ViSANT)

2. Click on the logo of ViSANT
The VisANT applet is loaded.

3. Accept the authentification certifate.
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2.2.3 Protocol for the command-line tools
Format conversion and layout calculation

If you have installed a stand-alone version of the NeAT digtion, you can use the programs
convert-graph anddisplay-graph on the command-line. This requires to be familiar with
the Unix shell interface. If you don’t have the stand-alooeld, you can skip this section
and read the next section (Interpretation of the results)viJualize the networks with yED,
ViSANT or Cytoscape, you must of course install them on youmpaoter.

1. First let us download the network fistring _coex_simple.tafrom the NeAT tutorial
download pagehttp://rsat.ulb.ac.be/rsat/data/neat_tuto_data/

2. In this first step, we will convert the tab delimited Stringtwork that we just down-
loaded into a GML file by using this command. We compute theuapf the nodes.
Moreover, we compute an edge width and an color proportitméhe weight on the

edge.
convert-graph -from tab -to gml -wcol 3 -i string_coex_simp le.tab
-0 string_coex_simple.gml -layout -ewidth -wcol 3 -ecolor s fire

Visualization using NeAT

Use the following command to create a graph using the N&i&play-graph program.

display-graph -in_format gml -out format png -i string_co ex_simple.gml
-0 string_coex_simple.png -ewidth

Visualization using Cytoscape (version 2.3)
1. Open Cytoscape
2. Click onFile > Import > Network...> Select

3. Selectthe filestring _coex_simple.gnf the graph contains more than 500 nodes, it will
not be displayed immediately. Right click on the name of tlaogffile in theCytopanel
1 and selecCreate view...

Visualization using YED (version 3)
1. OpenyED

2. Click onFile > Import

3. Select the filestring _coex_simple.gml

As NeAT GML converter add edge labels of the typmleNamel nodeNam&# un-
weighted or unlabeled graph, you may need to remove the edigé for a better visi-

bility.

11
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4. Click on one edge (random)
The edge you clicked on is now selected.

5. Prestrl+A
All edges are now selected.

6. In theProperty view(Right of the screen), in thiabel part, uncheck theisible option.

12



3 Comparisons between networks

3.1 Introduction

Protein interaction networks have deserved a specialtattefor molecular biologists, and
several high-throughput methods have been developedgitivenlast years, to reveal either
pairwise interactions between proteins (two-hybrid textbgy) or protein complexes (meth-
ods relying on mass-spectrometry). The tenmteractomehas been defined to denote the
complete set of interactions between proteins of a givearosgn.

Interactome data is typically represented by an un-dicegtaph, where each node repre-
sents a polypeptide, and each edge an interaction betwegootypeptides.

The yeast interactome was characterized by the two-hybethod by two independent
groups, Uetz and co-worker8][ and Ito and co-workers?], respectively. Surprisingly, the
two graphs resulting from these experiments showed a veajl amtersection.

In this tutorial, we will use the prograwompare-graphsto analyze the interactome graphs
published by from Uetz and Ito, respectively.

We will first perform a detailed comparison, by merging the yvaphs, and labelling each
node according to the fact that it was found in Ito’s netwaml Jetz’ network, or in both. We
will then compute some statistics to estimate the signitieasf the intersection between the
two interactome graphs.

3.2 Computing the intersection, union and differences
between two graphs

3.2.1 Study case

In this demonstration, we will compare the networks resglfrom the two first publications
reporting a complete characterization of the yeast interae, obtained using the two-hybrid
method.The first network?] contains 865 interactions between 926 proteins.The skpet:
work [?] contains 786 interactions between 779 proteins. We wiliga¢he two networks (i.e.
compute their union), and label each edge according to théfat it is found in Ito’s network,
Uetz’ network, or both. We will also compute the statistisgjnificance of the intersection
between the two networks.

3.2.2 Protocol for the web server

1. In theNeATmenu, select the commametwork comparison.

13



In the right panel, you should now see a form entitled “corepgnaphs”.

2. Click on the buttorDEMO.

The form is now filled with two graphs, and the parameters H@een set up to their
appropriate value for the demonstration. At the top of thenfoyou can read some
information about the goal of the demo, and the source of &éte. d

3. Click on the buttorGO.

The computation should take a few seconds only. The resgk gaows you some
statistics about the comparison (see interpretation Belnd a link pointing to the full
result file.

4. Click on the link to see the full result file.

3.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT tigtion, you can use the program
compare-graphson the command-line. This requires to be familiar with thaxshell in-
terface. If you don't have the stand-alone tools, you cap #kis section and read the next
section (Interpretation of the results).

We will now describe the use @lompare-graphsas a command line tool. The two two-
hybrid datasets described in the previous section may belldaded at the following ad-
dresshttp://rsat.ulb.ac.be/rsat/data/neat_tuto_data/ . These are the
filesuetz_2001.talandito_2002.tab

1. Go inthe directory where the files containing the graphsotapare are located.
2. Type the following command

compare-graphs -v 1 -Q ito_2002.tab -R uetz_2001.tab -retu rn union \
-0 uetz_2001_union_ito_2002.tab

Using these options, some comparaison statistics areagiesppland the results are stored in

the tab-delimited filauetz_2001_union_ito_2002.tab
In order to compute the difference or the intersection, yaistnahange thereturnoption.
For example, to compute the intersection, you shoud type.

compare-graphs -v 1 -Q ito_2002.tab -R uetz_2001.tab -retu rn intersection \
-0 uetz_2001 inter_ito_2002.tab

3.2.4 Interpretation of the results

The prograncompare-graphsuses symbol& andQ respectively, to denote the two graphs
to be compared. Usuallig stands for reference, ai@ifor query.

In our caseR indicates Ito’s network, whered&3 indicates Uetz’ network. The two input
graphs are considered equivalent, there is no reason tadeomse of them as reference, but
this does not really matter, because the statistics usettiéactomparison are symmetrical,as
we will see below.

14
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Union, intersection and differences

The result file contains the union graph, in tab-delimiteairfat. This format is very conve-

nient for inspecting the result, and for importing it intatsstical packages (R, Excel, ...).
The rows starting with a semicolon (;) are comment lines. yTp®vide you with some

information (e.g. statistics about the intersection),thety will be ignored by graph-reading

programs. The description of the result graph comes imnagliafter these comment lines.
Each row corresponds to one arc, and each column specifiegtoibeate of the arc.

1. source the ID of the source node
2. target: the ID of the target node

3. label: the label of the arc. As labels, we selected the option “Wisign the query and
reference”. Since the input graphs were un-weighted, ealgeld will be used instead
of weights. The labekNULL>indicates that an edge is absent from one input network.

4. color andstatus the status of the arc indicates whether it is found at therssiction,
or in one graph only. A color code reflects this status, asatdd below.

* R.and.Q arcs found at the intersection between graBrend Q. Default color:
green.

* R.not.Q arcs found in grapR but not in grapQ. Default color: violet.
* Q.not.R arcs found in grapkQ but not in graptR. Default color: red.

The result file contains several thousands of arcs, and wefigiburse not inspect them
by reading each row of this file. Instead, we can generatewimlgan order to obtain
an intuitive perception of the graph.

Sizes of the union, intersection and differences

The beginning of the result file gives us some informationukiee size of the two input
files, their union, intersection, and differences.

; Counts of nodes and arcs

; Graph Nodes Arcs Description

; R 779 786 Reference graph

; Q 926 865 Query graph

; QVR 1359 1529 Union

; Q"R 346 122 Intersection

; QR 580 743 Query not reference
; RIQ 433 664 Reference not query

15
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Statistical significance of the intersection between two gra phs

The next lines of the result file give some statistics aboetititersection between the
two graphs. These statistics are computed in terms of arcs.

; Significance of the number of arcs at the intersection

Symbol  Value Description Formula

N 1359 Nodes in the union

M 922761 Max number of arcs in the union M =N * (N-1)/2

E(Q"R) 0.74 Expected arcs in the intersection E(Q"R) = Q *R/IM
Q"R 122 Observed arcs in the intersection

perc_Q 14.10 Percentage of query arcs perc Q = 100 * Q"R/Q
perc_R 15.52 Percentage of reference arcs perc R = 100 * Q"R/R
Jac_sim 0.0798 Jaccard coefficient of similarity Jac_sim = Q"R/(QVR)
Pval 2.5e-228 P-value of the intersection Pval=P(X >= Q"R)

A first interesting point is the maximal number of ard$)(that can be traced between
any two nodes of the union graph. In our study case, the griagatined by merging Ito’s
and Uetz’ data contair’d = 1359 nodes. This graph is un-directed, and there are no self-
loops. The maximal number of arcs is thds= N« (N —1)/2 =922 761. This number
seems huge, compared to the number of arcs observed in Bigter(Aq = 865) or

Ito’s (Ar = 786) graphs. This means that these two graphs are sparyea oaty small
fraction of the node pairs are linked by an arc.

The next question is to evaluate the statistical signifieasfcthe intersection between
the two graphs. For this, we can already compute the sizevitattd be expected if we
select two random sets of arcs of the same sizes as abgve 865,Ar = 4,038).

If the same numbers of arcs were picked up at random in thenugmaph, we could
estimate the probability for an arc to be found in the netwr&s follows: P(R) =
Ar/M = 0.000852. Similarly, the probability for an arc of the unioragh to be part
of the networkQ is P(Q) = Ag/M = 0.000937. The probability for an arc to be found
independently in two random networks of the same sizéR asdQ is the product of
these probabilities.

P(QR) = P(Q) *P(R) = Ag/M - Aqg/M = 7.98¢ — 07

The number of arcs expected by chance in the intersectidr iprobability multiplied
by the maximal number of arcs.

E(QR = P(QR:M
= (Ag-AR)/M
= 7.98e—-07-922761=0.74



Thus, at the intersection between two random sets of iniergave would expect on
the average a bit less than one interaction. It seems thastbiat the 122 interactions
found at the intersection between he two published expetisrie much higher than the
random expectation.

We can even go one step further, and computeRhalueof this intersection, i.e. the
probability to select at least that many interactions bynclea

The probability to observexactly xarcs at the intersection is given by the hypergeo-
metrical distribution.

cxcOX
P(QR=x) = =R (3.1)
CM

where
R is the number of arcs in the reference graph;
Q ithe number of arcs in the query graph;
M is the maximal number of arcs;
X is the number of arcs at the intersection between the twagrap

By summing this formula, we obtain the P-value of the inteisaci.e. the probability
to observeat least xarcs at the intersection.

min(Q,R) min(Q.R) i Q-
Pval=P(QR>=x) = P(X =i)= R~M—R
iZX i=x Cl\a

We can replace the symbols by the numbers of our study case.

Pval = P(QR>=122)

Min(865786) (~i  ~865—i
_ Z CreeCo20761 786

C865
i=x 922761
= 2.5e—228

This probabilty is so small that it comes close to the limipogcision of our program
(~ 1032,

Summary

In summary, the comparison revealed that the number of atosifin common between the
two datasets (Ito and Uetz) is highly significant, despiteapparently small percentage of the
respective graphs it represents (14.10% of Ito, and 15.52%1tz).

17



3.3 Strengths and weaknesses of the approach

3.4 Exercises

1. Using the tool the toahetwork randomization, generate two random graphs of 1000

nodes and 1000 arcs each (you will need to store these ranetwwonks on your hard
drive). Use the toohetwork comparison to compare the two random graphs. Discuss
the result, including the following questions:

a) What is the size of the intersection ? Does it corresponidet@xpected value ?
b) Which P-value do you obtain ? How do you interpret this Rt

. Randomize Ito’s network with the tooktwork randomization, and compare this ran-

domized graph with Uetz’ network. Discuss the result in thme way as for the previ-
ous exercise.

3.5 Troubleshooting

18

1. The P-value of the intersection between two graphs is @shtanean that it is impos-

sible to have such an intersection by chance alone ?

No. Any intersection that you observe in practice might ednuchance, but the limit
of precision for the hypergeometric P-value~is10-321, Thus, a value of 0 can be
interpreted a®val < 10732,

. The web server indicates that the result will appear, &ed afew minutes my browser

displays a message “No response the server”.

How big are the two graphs that you are comparing ? In priecigpmpare-graphs can
treat large graphs in a short time, but if your graphs are lage (e.g. several hundreds
of thousands of arcs), the processing time may exceed tlenpatof your browser. In
such case, you should consider either to install the stk aersion ofNeAT on your
computer, or write a script that usdeAT via their Web services interface.



4 Node degree statistics

4.1 Introduction

In a graph, the degrdeof a node is the number of edges connected to this node. Ifriphg
is directed, we can make a distinction between the in-deneenumber input arcs) and the
out-degree (number of output arcs). In this case, the degde node consists in the sum of
the in-degree and of the out-degree of this node.

Different nodes having different degrees, this variapiktcharacterized by the degree dis-
tribution functionP(k), which gives the probability that a node has exaktylges, or, in other
words gives the observed frequency of a node of delgree

Scale-free graphs were first described by Barabasi base@ situtty of the web connectiv-
ity, followed by several different biological networkg|]

A graph is scale-free if the distribution of the vertex degfe follows a power-law distri-
bution of the formP(k) kY.

The main property of such graphs is that it should have on and kome highly connected
nodes, called hubs, which are central to the network togolkmgdkeep the network together
and on the other hand a lot of poorly connected nodes linkéukethubs.

In the following, we will check if this scale free propertysal applies to the two-hybrid
network described by Uetet al [?] by computing the degree of each node and plotting the
node degree distribution of the graph.

4.2 Analysis of the node degree distribution of a
biological network

4.2.1 Study case

In this demonstration, we will analyze the node degreeitigion of the first published yeast
protein interaction network. This network is the first atfeto study the yeast interactome
using the two-hybrid method and contains 865 interacti@ta&/ben 926 protein&].

4.2.2 Protocol for the web server

1. IntheNeATmenu, select the commamdde topology statistics
In the right panel, you should now see a form entitled “grémtology”.

2. Click on the buttorDEMO.
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The form is now filled with a graph in the tab-delimited fornend the parameters have
been set up to their appropriate value for the demonstratmnthe degree of all nodes
will be computed. At the top of the form, you can read somermfation about the goal
of the demo, and the source of the data.

As this is a protein - protein interaction graph, we can ad&sthat an interaction be-
tween a protein A with a protein B corresponds to an inteoadbetween protein B and
protein A. The graph is thus not directed.

You can uncheck the compution of the closeness and betwseas¢hese statistics will
not be discussed in this section and as this process wikase the computation time.

3. Click on the buttorGO.

The computation should take less than one minute. On one trenesult page displays
a link to the result file and on the other hand the graphics awdiata of the node degree
distribution are also available. These will be discussetémnterpretation of the results
section.

4.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT digtion, you can use the program
graph-topology on the command-line. This requires to be familiar with thaxhell in-
terface. If you don't have the stand-alone tools, you cap #kis section and read the next
section (Interpretation of the results).

We will now describe the use @raph-topology as a command line tool. The two two-
hybrid dataset described in the previous section may be ldagad at the following ad-
dresshttp://rsat.ulb.ac.be/rsat/data/neat_tuto_data/ . This is the file
uetz_2001.tab

1. The first step consist in applyirggaph-topology on the two-hybrid dataset. To this, go
into the directory where you downloaded the filetz 2001.tafand use this command.

graph-topology -v 1 -i uetz_2001.tab -return degree -all \
-0 uetz_2001_ degrees.tab

The file uetz_2001_degrees.tabcreated and contains the degree of each node of the
Uetzet al data set.

2. In the second step, we will study the degree distributibthe nodes. To this, we use
the programclassfreqfrom the RSAT suite that compute the distribution of a set of
number. As the graph we are working with is undirected, we avily compute this
degree distribution for the global degree of the nodes wisithe second column of the
file uetz_2001 degrees.tabtained in the previous step.

classfreq -i uetz 2001 degrees.tab -v 1 -col 2 -ci 1 \
-0 uetz_2001 degrees freq.tab
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3. Finally, we will display the distribution graph in the PN@'mat in order to visualize
the degree distribution and determine if it has a scale fetatour. The program XY-
graph fromRSATwill be used for this purpose. Note that we could use othdstliie
Microsoft Excel or R. The results will be stored in the fileetz_ 2001 degrees_freq.png
that you can open with any visualization tool.

XYgraph -i uetz 2001 degrees_freqg.tab \
-title 'Global node degree distribution (interaction grap h: Uetz 2001)' \
-xcol 2 -ycol 4,6 -xlegl Degree -lines \

-ylegl 'Number of nodes' -legend -header -format png \
-0 uetz_2001_degrees_freq.png

4.2.4 Interpretation of the results
graph-topology result file

Open the resulting file produced lgraph-topology. According to the requested level of
verbosity €v # option), the file begins with some lines starting with thed#”;’ symbols that
contains some information about the graph and the desamipfithe columns.

The results consists in a two columns data set.

1. Node name
2. Global degree

Note that if you used the ’-directed’ option, the resultinig tontains 3 more columns
specifying the in-degree, the out-degree and whether tde isonly a source node or a target
node.

Node degree distribution

Let us first have a look at the node degree distribution dagapfibduced by thelassfreq
program (raw data). This file is a tab-delimited file contagn® columns. Each line consists
in a value interval. In our case, the value is the degree ontiues.

1. Minimal value of the interval
2. Maximal value of the interval
3. Central value of the interval

4. Frequency : Number of elements in this class interval (memof nodes having a degree
comprised betwee the minimal and the maximal values.

5. Cumulative frequency.

6. Inverse cumulative frequency
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7. Relative frequency : number of elements in this class dweetdtal number of elements
8. Relative cumulative frequency

9. Inverse relative cumulative frequency

The first result line contains the distribution results fog hodes having only one neighbour
(i.e. degree comprised between 1 and 2), from it we can s¢&TTaover 926, i.e., 62% of
the nodes have a degree of one. Moreover, about 90% of thes iade a degree lower than
4. This is indicative of the scale-free nature of the intdoacnetwork.

The figure best illustrates the scale-freeness of the gréien looking at the graphical
representation of this distribution, we can see two curVés. blue curve represents the abso-
lute frequency and the green curve the inverse cumulagggigncy. The exponential decrease
of both curves shows that there are a lot more nodes poorlyezted than highly connected
(hubs). The Uetz graph thus presents a scale free behaviour.

chapterStudy of the neighborhood of the nodes

4.3 Introduction

In a graph, the neighbours of a node consist in the set of rtbdésare connected to this node
up to a certain distance, i.e., the number of steps betweesailrce node and its neighbours.
In weighted graphs, one can also consider the neighbouis aipertain maximal weight.

In the following, we will refer to the node for which we seartte neighbours theeed
node

According to the type of graph, it might be interesting taieste the neighbours of the
nodes in a graph.

For example, in protein-protein interaction network, thedtion of the neighbours of a
protein whose biological role is unknown might give insgin the function of the protein.
Moreover, in interaction graphs, if a group of neighbourgehsimilar biological functions,
they are likely to form a structural complex.

In co-regulation networks, where each node is a gene andgaedween two genes means
that those genes are co-regulated (i.e. co-repressed agxpoessed), exploring the neigh-
bours of the nodes may help in the discovery of new regulons.

In the following, we will illustrate the study of nodes nelgdrhood by looking for neigh-
bours of some orphan proteins (i.e. protein of unknown fiengtin a protein protein interac-
tion network. We will then look if the neighbours of these teiins present similar functions.

4.4 Analysis of the neighbours of orphan nodes in an
interaction protein network

4.4.1 Study case

In this demonstration, we will analyze the neighbours ofdhghan nodes of the Gavet al
(2006) interaction data set. These interaction data wetar@a by co-immunoprecipitation
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followed by a mass spectrometry experiment in order to dscstructural protein complexes.
[?]. This network contains 6531 interactions between 1430=ome.

We will then compare these groups of neighbours with fumetad classes of proteins an-
notated in the MIPSY] in order to detect if the groups of neighbours present aifsogiively
high number of co-regulated proteins.

4.4.2 Protocol for the web server

1. In the NeATmenu, select the commargkt node neighborhood In the right panel,
you should now see a form entitled “graph-neighbours”.

2. Open a connection to the demo dataset download web page.
http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/

3. Download the filegavin_2006 _names.tatrphan_gavin.tabndmips_name_class _description.tab
on your computer.

4. In theUpload graph from filetext area, load the filgavin_2006 names.tajpu just
downloaded.

5. Uncheckinclude each node in its neighborhood (with a distance af)zer
6. Check the radio-buttoNode selectioim the seed node part of the form

7. In theUpload seed nodes from fitext area, load the filerphan_gavin.tab.tapou just
downloaded.

8. Click on the buttorGO.
The computation should take less than one minute.

The result page should display the results in the tab-dedthor HTML format. These
files will be described in the sectidnterpretation of the results

9. We will now see if the different groups of neighbours camtasignificantly high num-
ber of proteins of similar function. To this, we will compate groups of neighbours
we just obtained with annotated groups of proteins, e.g.,génes annotated accord-
ing to the gene ontology?] or, in this example, according to the functionnal classes
of the MIPS [?]. In the Next steppannel, click on the butto@ompare the groups of
neighbours

You are redirected to the form of another progremmpare-classeshat allows to com-
pare two class files (the query file and the reference file).hEdass of a query file
is compared to each class of a reference file. The number ofoonelements is re-
ported, as well as the probability to observe at least thisher of common elements by
chance alone. The query classes are already loaded andtdartsie different groups
of neighbours we discovered previously wghaph-neighbours.
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10. IntheUpload reference classes from fikxt area, load the filmips_name_class_description.ta

downloaded in the first part of this tutorial. The classesfdes two column files, the
first column contains the elements and the second columnldlss © which the ele-
ments belong. Elements may belong to more than one class.

11. The default paramaters are sufficient. We will only kdepdomparison presenting a
significance higher than 0.

12. Click on the buttorGGO.

13. You obtain the links to the result file in the tab-delirdifermat or in the HTML format.
The obtained results will be described in the next section.

4.4.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT digtion, you can use the program
graph-neighbours on the command-line. This requires to be familiar with thexUshell
interface. If you don’t have the stand-alone tools, you dap this section and read the next
section (Interpretation of the results).

We will now describe the use graph-neighboursas a command line tool. The Gawh
al (2006) [?] co-immunoprecipitation dataset described in the previgection and the other
files necessary for this tutorial may be downloaded at tHevi@hg address

http://rsat.ulb.ac.be/rsat/data/neat_tuto_data/

(gavin_2006 _names.tabrphan_gavin.talandmips_name_class_description.Yab

1. The first step consist in applyingraph-neighbours on the co-immunoprecipitation
dataset. To this, go into the directory where you downlodbedilesgavin_ 2006 _names.tab
orphan_gavin.taland use this command.

graph-neighbours -v 1 -i gavin_2006_names.tab \
-seedf orphan_gavin.tab \
-0 gavin_2006_orphan_neighbours_1.tab

The file gavin_2006_orphan_neighbours_1.talereated and contains for each node of
the seed file the list of its direct neighbours, i.e., for eaidtein, the list of proteins that
co-precipitated with it.

2. In the second step, we will compare these groups of neigklto different groups of
annotated proteins in order to discover if the groups of m@igirs do contain a signi-
ficatively high number of proteins of similar functions. $hwill give insights into the
function of the orphans proteins used as seed nodes in thstés To this, we will use
the RSAT compare-classeprogram that allows to compare two class files (the query
file and the reference file) (see previous section or the RS#Fi&l for a more com-
plete description ofompare-classels Use the following command to compare the two
files.
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compare-classes -v 1 \
-q gavin_2006_orphan_neighbours_1.tab \
-r mips_name_class_description.tab \
-Ith sig O -sort sig -return proba,occ,jac_sim \
-0 gavin_2006_orphan_neighbours_1 cc_mips_functionna |_classes.tab

We obtain a filegavin_2006 _orphan_neighbours 1 cc_mips_functiomiedses.talgon-
taining the significant comparaison results. We will digciisn the following section (inter-
pretation of the results).

4.4.4 Interpretation of the results
graph-neighbours result file

According to the requested level of verbosity, the resudt filay first contain several lines
(starting with “#” or “;”). These deliver some informatiotbaut the analysed graph (number
of nodes, edges, seed nodes, ...). The results are theaysidph four columns.

1. Name of the neighbour.
2. Name of the seed node (for which the neighbours are seelkbd graph).
3. Distance between the seed node and its neighbour (nurhbieps).

4. The last column, only relevant for directed graph, intiaahether the arc between the
seed node and its neighbour is an out- or an in-going arc.

This file can be considered as a class file (see above for a rapelete description) with
the name of the neighbour being the member (first column)lE@adame of the seed node, the
name of the class (second column).

compare-classes result file

The result of the comparaison between the groups of neighlemd the MIPS annotated
classes are displayed in a multi-column file sorted by deamgaorder of significance. When
looking at the HTML version of the file, you may click on the deaon the column to sort
the table according to this field.

Each line displays the comparaison between a MIPS annatketssl (reference class) and a
group of neighbours (query class). What we want to know isdféhs a significatively high
number of members of the same MIPS class in a given group ghoars.

ref Name of the MIPS functionnal class.
guery Name of the group of neighbours (seed node).

R Size of the reference class (humber of members in this MI&SS)c
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Q Size of the query class (number of neighbour for this seel@ho
QR Intersection size between the group of neighbours anfilitfetionnal class.
QVR Union size between the group of neighbours and the foimeél class.
R!Q Elements that are in the functionnal class but not in tleeigs of neighbours.
Q'R Elements that are not in the functionnal class but areergroups of neighbours.
IQ'R Elements that are not in the functionnal class nor ingmips of neighbours.

P-val P-value of the comparaison, propability (accordimdhie hypergeometric law) to be
wrong when claimin that there is a significatively high numbgproteins of the same
class in the group of neighbours.

E-val E-value of the comparaison. P-value multiplied by tital number of comparaisons.
This value corresponds to the estimated number of falsdiyesifor a given P-value
threshold.

sig Significance of the comparaison. This correpsonds|tm;o(E — val). This index
gives an intuitive perception of the exceptionality of tleerenon elements : a negative
significance indicates that the common matches are likegpine by chance alone, a
positive value that they are significant.

Considering the file, we can observe that 7 seed nodes (on jHea¥é a group of neigh-
bours presenting a similar function. For example, 9 out ef@ neighbours of the Yil161w
protein (interacting with this protein) have their functicelated to ribosome biogenesis and 8
out of 10 neigbours are located in the cytoplasm. This maigatd that this protein may also
be implied in ribosome biogenesis
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5 Graph clustering

5.1 Introduction

Abruptely, graph clustering consists in grouping the nodeshe networks into different
classes or clusters. The groupment of the nodes can be doosleg to various different
criteria, i.e., nodes of the same color, nodes of the same, tgic. Commonly, nodes are
grouped according to the fact they present a relatively higimber of connections between
them compared to the number of connections with the otheesiodmposing the network. In
the following, we will only consider clustering methods agp at retrieving highly intercon-
nected groups of nodes in a network.

In bioinformatics, a lot of clustering approaches haveaayebeen applied to various types
of network, e.g. protein-protein interaction network (s@eong others?, ?, ?]), metabolic
graphs P], biological sequences?] ?]), etc.

Clustering of protein interaction network may be of valualédp in order to retrieve in
a large graphs real biological complexes in the cell. Moegol in the detected complexes
some of proteins are of unknown function but the rest of thetgans present all present a
similar function, this may give insights in the function betunknown protein.

In the following, we will apply different graph based clustg) approaches on the yeast
protein - protein interaction network published by Gaeinal [?] and obtained by multiple
co-immunoprecipitation experiments with each yeast jmaised as bait followed by a mass
spectrometry procedure to identify all the proteins thatjpitated with the baits.

The clustering algorithms we will apply are théCL [?, ?] and RNSC [?]. Hereafter,
follows a short description of both clustering algorithnapied from [?].

The Markov Cluster algorithm\CL ) simulates a flow on the graph by calculating succes-
sive powers of the associated adjacency matrix. At eacatiter, aninflation stepis applied
to enhance the contrast between regions of strong or weakirildlae graph. The process
converges towards a partition of the graph, with a set offligh regions (the clusters) sepa-
rated by boundaries with no flow. The value of th#ation parametesstrongly influences the
number of clusters.

The second algorithm, Restricted Neighborhood Search Cingt@NSC), is a cost-based
local search algorithm that explores the solution spaceinamee a cost function, calculated
according to the numbers of intra-cluster and inter-clustdges. Starting from an initial
random solutionRNSC iteratively moves a vertex from one cluster to another i§ timove
reduces the general cost. When a (user-specified) numbenashhas been reached without
decreasing the cost function, the program ends up.

In order to dispose of a negative control, we advice the re@adead the next chapter about
graph randomization and alteration.
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5.2 Network clustering comparison

5.2.1 Study case

In this demonstration, we will compare the performancesaaf ¢graph based clustering al-
gorithms MCL and RNSC. First, we will apply them to the protein - protein interacti
described by Gaviet al[?], secondly we will compare the resulting clusters to the plaxes
annotated for the yeast in the MIPS datab&je [

Note that as the interaction network and the MIPS complexeddferent dataset (i.e.
different proteins), the performances of the algorithi & rather low.

To run this tutorial on the command line, you need to have BRMSC andMCL installed
on your computer. You can find the MCL source codehttp://micans.org/mcland RNSC
on http://rsat.ulb.ac.be/ rsat/rnsc/rnsc_rewritten_coitedB2.zip

5.2.2 Protocol for the web server
Dataset download

Go on the NeAT demo dataset web pab#g://rsat.ulb.ac.be/rsat/data/neat_tuto_dgtahd
download the MIPS complexesijps_complexes.tgh

Network clustering with MCL

1. IntheNeATleft menu, select the commaigaaph-based clustering (MCL).

In the right panel, you should now see a form entitled “MCL".

2. Click on the buttorDEMO.

The form is now filled with the Gavin co-immunoprecipitatiprotein interaction net-
work graph in the tab-delimited format, and the parametexse lbeen set up to their
appropriate value for the demonstration, i.e., the inftatialue (the MCL main param-
eter) is set to 1.8, the optimal value fMCL protein interaction network clustering

[?].
The inflation acts mainly on the number of clusters resulfiiog the clustering, i.e., by
increasing the inflation, you will obtain a larger number wiadler clusters.

Note that MCL accepts weighted networks (which is not the base), a higher weight
on an edge will reinforce the strength of the link between hodes.

3. Click on the buttorGO.

The computation should take less than one minute. On one trenesult page displays
a link to the result file and on the other hand a graphic showirgsize distribution of
the obtained complexes is also available. These will beudsad in thénterpretation
of the resultsection.
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4. Save the resulting file under the namavin_2006 _mcl_inf 1.8 clusters.tély right
clicking on the resulting file and choosiigave as ...

Network clustering with RNSC

1. In theNeATleft menu, select the commaigdaph-based clustering (RNSC)
In the right panel, you should now see a form entitled “RNSC”.

2. Click on the buttorDEMO.

The form is now filled with the Gavin co-immunoprecipitatiprotein interaction net-
work graph in the tab-delimited format, and the parametesstbeen set up to their
appropriate value for the demonstration, i.e., the nuneRNSC parameters are set
to the optimal values foRNSC protein interaction network clustering determined in
[?]. However, in this study, we found that t&NSC performances were not strongly
affected by the parameters values.

Note that, unlike MCL, RNSC does not accept weighted networks.

3. Click on the buttorGO.

The computation should take less than one minute. On one traicksult page displays
a link to the result file and on the other hand a graphic showiegsize distribution of
the obtained complexes is also avaible. These will be dsszlis thenterpretation of
the resultssection.

4. Save the resulting file under the nagevin_2006 _rnsc_clusters.tély right clicking
on the resulting file and choosirgave as ...

Clustering quality assessment

In the following, we will only describe the procedure to gtignthe performances of the
clustering algorithms by comparing théCL obtained clusters to the complexes annotated in
the MIPS database. You will thus have to redo this whole seatiith theRNSC clustering
results.

1. In theNeAT left menu, select the commar@bmpare classes/clusters

In the right panel, you should now see a form entitled “corapaasses”. This program
will build a contigency table, i.e., a table where each ligpresents the annotated com-
plexes and each column the clusters of highly connecteeipotThis matrix will then
be used to compute quality statistics.

2. Inthe “Upload query classes from file” menu, select thegidlein_2006_mcl_inf_1.8 clusters.tab
we just computed.

3. Inthe “Upload reference classes from file” menu, selexfitt mips_complexes.talve
just downloaded.
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4. Select “Matrix file” as output format
5. Click on the buttorGO.

6. The contigency table (see the resulting links as text dviHTile) can now be used in
the next process by clicking on the buttoantingency table statistics

In the right panel, you should now see a form entitled “caygimcy-stats”. This program
will compute the statistics described ifi],[ namely thePPV, the sensitivityand the
Separatiorstatistics in order to estimate the quality of a clusterieguits to predict the
complexes annotated in the MIPS.

7. Click on the buttorGO.

The resulting statistics will be described in the followisgctioninterpretation of the
results save them under the nargavin_2006_mcl_inf_1.8 vs_mips_stats.tab

Re-do the whole procedure with the file obtained wRiNSC and save the contingency-
stats output under the nargavin_2006_rnsc_vs_mips_stats.tab

5.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT dtistion, you can also use all the
programs on the command-line. This requires to be familidgin whe Unix shell interface.
If you do not have the stand-alone tools, you can skip this@eand read the next section
(Interpretation of the resuljs

The explanation of the parameters used®?dtSC andMCL in this approach are described
in the Web servesection of this chapter.

We will now describe the use ®NSC, MCL , compare-classesconvert-classesconvert-
graph and contigency-statsas command line tools. As a preliminary step, go on the NeAT
demo dataset web pagétip://rsat.ulb.ac.be/rsat/data/neat_tuto_dagtand download the

MIPS complexesrtips_complexes_names.jand the Gavin interaction datasgain_2006_names.

Network clustering with MCL

1. The first step consist in applyindCL on the co-immunoprecipitation dataset. To
this, go into the directory where you downloaded the fiegz 2001.tatand use this
command.

mcl gavin_2006_names.tab -1 1.8 --abc -0 gavin_2006_mcl_i nf 1.8 clusters.mcl

The file gavin_2006_mcl_inf_1.8 clusters.misl created and contains the clusters of
highly connected node in the interaction dataset. Howews, file is formatted in
the MCL format that is not usable by the NeAT / RSAT tools. We will thise uhe
programconvert-classedo convert this file in a tab delimited format with the follavg
command.
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convert-classes -i gavin_2006_mcl_inf_1.8 clusters.mc I\
-0 gavin_2006_mcl_inf 1.8 clusters.tab \
-from mcl -to tab

The resulting file is a two column file containing for each nffdst column) the cluster
to which it belongs (second column).

Network clustering with RNSC

1. The first step will consist in converting the tab delimifedmat in which the protein
interaction dataset is encoded into a format readable bRN®C clustering algorithm.
To this, we will use the convert-graph programwith the failog command.

convert-graph -from tab -to rnsc \
-i gavin_2006_names.tab -0 gavin_2006_rnsc

Two files are createdgavin 2006 _rnsc.rnsand gavin_2006 _rnsc_node_names.tnsc
The first one contains the graph in itself, under the formaincdidjacency list. However,
each node is identified by a number. The protein names camespy to the nodes
identifiers are encoded in the second file (two column tabdigd file).

2. We can now apphRNSC on the network with the following command.

rnsc -g gavin_2006_rnsc.rnsc -t 50 -T 1 -n 15 -N 15 -e 3 -D 50 \
-d 3 -0 gavin_2006_rnsc_clusters.rnsc

The file gavin_2006_rnsc_clusters.rngccreated and contains the clusters of highly
connected node in the interaction dataset. However, tieissfilormatted in th&(kRNSC
format that is not usable by thdeAT / RSATtools. We will thus use the program
convert-classedo convert this file in a tab delimited format with the follavg com-
mand.

convert-classes -i gavin_2006_rnsc_clusters.rnsc \
-0 gavin_2006_rnsc_clusters.tab \
-from rnsc -to tab \
-names gavin_2006_rnsc_node_names.rnsc

The resulting file is a two column file containing for each néfitst column) the cluster
to which it belongs (second column).
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Assessing clustering quality

In this section, we will describe how to build a contingenable by comparing the clusters
extracted from the networks by/CL and RNSC to annotated complexes and the way to
compute statistics on this contingency-table.

We will only describe the procedure for théCL results. You should redo this section for
the RNSC clustering results.

1. The prograntompare-classesan build (among other things) a contingency table, i.e.,
a table where each line represents the annotated complexesiah column the clusters
of highly connected proteins. This table will then be useddmpute quality statistics.

compare-classes -q gavin_2006_inf_1.8.tab \
-r mips_complexes_names.tab -matrix QR \
-0 gavin_2006_inf 1.8 cc_complexes_matrix.tab

The filegavin_2006_inf_1.8 cc_complexes_matrix.tev contains a contigency table
in a tab delimited format.

2. We can now study the quality of the clustering with dmmtingency-statstool that was
used in P] to computed standard evaluation statistics like B/, sensitivity and the
accuracy that will be precisely described in the following.

contingency-stats -i gavin_2006_inf_1.8_cc_complexes_ matrix.tab \
-0 gavin\_2006\_mcl\_inf\_1.8\_vs\ mips\_ stats.tab

Re-do this section with thgavin_2006 _rnsc_clusters.rrisabtain a file callediavin_2006_rnsc

5.2.4 Interpretation of the results
Files description

Contingency table  As already explained in a previous section, havilgIPS complexes
andm clusters, the contingency tableis an-m matrix where rowi corresponds to thé"
annotated complex, and colunjnto the j" cluster. The value of a ceflli ; indicates the
number of proteins found in common between complard cluster;.

The clustering quality will be evaluated from this table @aulating the Sensitivity§n),
the Positive predictive valué’PV), the row wise separatiotsép) and the cluster separation

(Sep).

Contingency table metrics A list of metrics and their value. These will be described in
the next section.
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Metrics description

Sensitivity, Positive predictive value and geometric accur acy For each complex,
we can calculate a sensitivity value. This correspondseaarhximal fraction of protein of
a complex that are attributed by a clustering algorithm sogame clusteiSnmeasures how
well proteins belonging to the same complex are groupedmitie same cluster.

_ max.(Tij)

S
n. N

whereN; corresponds to the size of the complex.

Moreover, for each clustgr, we calculated the Positive Predictive ValiPy) which cor-
responds to the maximal fraction of a cluster belonging ¢osthime complex. This reflects the
ability of this cluster to detect one complex.

max;(Ti;
j

whereM;j corresponds to the cluster size.

To summarize these values at the level of the confusion tai#ecalculated the average
of these values. First, we calculated their classical mgeavbraging all thd®PV; andSn,
values. We also calculated a weighted mean where the dumtercomplexes have a weight
proportional to their relative size on the the calculatibthe mean.

Sn= ZInzlsn
n
ppy — Z1=LPPY)
it NiSn.
S, = 25122
Yt N
ppy, — 21=1MiPPY]
> M

Sensitivity andPPV reflect two contradictory tendencies of the clusterir®nincreases
when all the proteins of the same complex are grouped in tine séuster andPPV decreases
when proteins coming from different complexes are groupethé same cluster. If all the
proteins of the network are grouped in the same cluster, wamize the Snbut the PPV
is almost 0. On the other hand, if each protein is placed inffardint cluster, the®?PV is
maximized but the sensitivity is very low. A compromise mbstfound between these two
cases by using another statistics. We defined the geometucacy as the geometrical mean
of the PPV and theSn

Acg = vVPPV-Sn
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Separation We also defined another metrics call8dparation(Sep. High Sepvalues
indicated a high bidirectionnal correspondance betweduaster and a complex.

The row-wise separation estimates how a complex is isofatea the others. Its maximal
value is 1 if this correspondance is perfect, i.e., wherhallgrotein of a complex are grouped
in one cluster and if this cluster does not contain any othieten. This maximal value
may also be reached when the complex is separated betwegnchaters containing only
members of the complex.

Sepl — ( ] . ) )
' j; ST YitaTij

The column-wise separation indicates how well a clustéaiss one or more complex from
the other clusters. The maximal value 1 indicates that d@erlu®ntains all the elements of
one or more complexes.

n
Ti.j Ti
! i; ST Yita T

As for the sensitivity and thBPV, for each clustering result, all values®ép ; andSep,
are averaged over all clusters and all complexes. We thenle& a global separation value
by calculating the geometrical mean of the average row wepamstion and of the average
column wise separation.

Sep=/SeR-Sep

Score comparaison

In the following, we can observe the statistics describetthénprevious paragraph computed
for the clustering results ®RNSC andMCL .

We can observe thadCL seems to produce slightly more valuable results as

1. The unweighted sensitivity is a bit higher ffCL than forRNSC and the weighted
sensitivity is much higher.

2. ThePPVis a only bit lower forMCL than forRNSC.

These results might certainly be explained by the large murob clusters found by
RNSC compared taMCL . Indeed, thé’PV increases and the sensitivity decreases with
the number of a clusters. We can observe the same tendeactés other metrics.

3. Global metrics (accuracy and separation) are generiglhehfor MCL than for RNSC
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metrics | RNSC | MCL

ncol 470 189
nrow 220 220
min 0 0
max 18 27

mean 0.0086| 0.0214
sum 889 889

Sn 0.603 | 0.652
PPV 0.424 | 0.472
acc 0.513 | 0.562

acc_g 0.505 | 0.555
Sn_w 0.622 | 0.767
PPV_w | 0.642 | 0.549
acc_w | 0.632 | 0.658
acc_g_w| 0.632 | 0.649
sep 0.303 | 0.353
sep_c 0.207 | 0.381
sep_r 0.443 | 0.327
Remark The following table was generated using the RSAT progcampare-scoressee
the help of this command line tool for more information
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6 Influence of graph alteration and
randomization on clustering

6.1 Introduction

Although negative controls and method evaluation are atyints to the experimental biol-
ogist, this is far from being the same in bioinformatics wehéoo often, no negative control is
associated to the predictions, so that one cannot estitmaterobability of these predictions
to biogically valid.

For this reason, in NeAT we developped programs allowin@tmlomize and to add some
specified levels of noise to networks. This allows the usapialy the techniques used to find
relevant results on networks where there is less or no saghathus were no interesting result
should emerge.

NeAT programs are able to generate randomized networksdingdo three methods.

1. Node degree conservatianthis approach consists in shuffling the edges, each node
keeping the same number of neighbors as in the original graph

2. Node degree distribution conservationn which the global distribution of the node
degree is conserved but each node presents a differenedégrein the original graph.

3. Erdos-Renyi randomizationwhere edges are distributed between pairs of nodes with
equal probability.

6.2 Quantitative assessment of a clustering algorithm

6.2.1 Study case

In this demonstration, we will use the approach developpel®]iwhere we evaluated the
performances of different graph clustering algorithmsagbr clustering algorithms allow to
retrieve in a graph the groups of nodes that contain moreemiimmms between them than with
the rest of the nodes of the graph. Clustering algorithms @ ased in biology in order to
extract coherent groups of nodes from networks (complegésction (e.g. se€?[?, 2, 7)),
protein families detectior?], co-expressed genes detection in co-expression net@xksee
[?]), ...). The NeAT web server proposes thkCL (Markov Cluster algorithmclustering
algorithm developped by Stijn van Dongéeh P]. To follow the command-line tools instruc-
tions, you should have MCL installed on your computer (atddathttp://micans.org/mcl/
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MCL simulates a flow on the graph by calculating successiveepswf the associated
adjacency matrix. At each iteration, enflation stegs applied to enhance the contrast between
regions of strong or weak flow in the graph. The process cgegiowards a partition of the
graph, with a set of high-flow regions (the clusters) segarhy boundaries with no flow. The
value of theinflation parameteistrongly influences the number of clusters. AccordingXo [
the optimal inflation value for clustering protein inteiactnetworks is 1.8.

We will use an atrtificial interaction network created frone tomplexes annotated in the
MIPS database by creating an edge between all the nodegjbeido the same comple®].
This network contains 12262 edges between 1095 nodes. \\Wbeviluse the MCL clustering
algorithm on this network, on a little altered network, onighty altered network and finally
on a randomized network.

We will then compare these clusters to the MIPS complexeseatichate how well MCL
can retrieve protein complexes from a protein-proteinratBon and the influence of the noise
on the results.

In this example, we will only use random alteration, i.ee #dges that are removed are
randomly chosen. This is done to mimick what happens reallgiological experiments
where some inter-relationships between the nodes (gerwsijns, metabolites, ...) may not
be discovered (false negatives) or are erroneously disedvéalse positives). However the
alter-graph program also allows to alterate the network with targetéat&ton user-selected
nodes. In their study, Spirin and Mirny][ showed the affect of node targeted attacks on
clustering results.

6.2.2 Protocol for the web server
Dataset download

Go on the demo dataset web pdgta://rsat.ulb.ac.be/rsat/data/neat_tuto_data/

and download the MIPS complex network fileofnplexes rm_00_ad_00.jaénd the com-
plexes (nips_complexes.tgb

Network alteration

1. In theNeATmenu, select the commametwork alteration .

2. In theUpload graph from filedext area, load the fileomplexes rm_00_ad_00.tabn-
taining the MIPS complexes network that you just downloaded

In theedges to addkext area, enter 10%.
In theedges to removeext area, enter 10%.

Click on the buttorGO.

o g &M W

Right click on the resulting file and save it with naoemplexes rm_10_ad_10.tab

Re-do the this alteration procedure using 50% of edges rdnaonvh100% of edges
addition. Save the resulting file with naraemplexes rm_50 ad 100.tab
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Network randomization

1. IntheNeATmenu, select the commametwork randomization.

2. IntheUpload graph from fildext area, load the fileomplexes rm 00 _ad _00.tab
3. Select théNode degree conservatioandomization type.

4. Click on the buttorGO.

5. Rightclick on the resulting file and save with nacmenplexes rm_00_ad 00 random.tab

Networks clustering and clustering assessment

1. IntheNeATmenu, select the commaiggdaph-based clustering MCL.
2. In theUpload graph from fildext area, load the fileomplexes rm_00_ad_00.tab

3. Click on the buttorGO. You should now obtain a link to the clustering results arel th
distribution of the sizes of the different clusters.

4. In theNext steannel, click on the buttoBompare these clusters to other clusters

5. In theUpload reference classes from fitext area, load thenips_complexes.tatile.

6. Choose thenatrix file output format

7. Click on the buttorGO. You now obtain a contingency table, i.e, a table Withows and
M columns [ being the number of MIPS complexes alid the number of clusters).

Each cell contains the number of protein common to one coxgid one cluster.

8. To calculate some statistics on this contingency tabiek on the contingency-table
statisticsbutton in theNext steppannel.

9. Thecontingency-statsform appears. As the contingency table is already uplogdsd,
lick on the GO button.

10. Save the resulting file under nam@antigency stats rm_00_ad_00.tab

Repeat these steps feaomplexes rm_10_ad_10.tatomplexes_rm_50 ad_100.tand
complexes_rm_00_ad_00_random.tad save the resulting files under the namcesti-
gency stats ad 10 _rm_10.tabntigency stats _ad 50 rm_100,tadntigency stats ad 00 _rm_0O
respectively.
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6.2.3 Protocol for the command-line tools

If you have installed a stand-alone version of the NeAT digtron, you can use the programs
random-graph andalter-graph on the command-line. This requires to be familiar with the
Unix shell interface. If you don’t have the stand-alone $ogbu can skip this section and read
the next section (Interpretation of the results).

We will now describe the use eédndom-graph, alter-graph , compare-classeandcontingency-
statsas command line tools. For this tutorial, you need to havéi@@é program installed.

Start by going on the demo dataset download web piipe//rsat.ulb.ac.be/rsat/data/neat_tuto_data/
and downloading the MIPS complex network fileofnplexes rm_00_ad 00.)abnd the
complexes hips_complexes.tgb

Network alteration
1. Go in the directory where you downloaded the file.

2. Use the following commands to alter the graph. Note that N&Jiot an RSAT / NeAT
program and thus cannot treat RSAT comments lines (startiting's# or with “;”). We
thus have to suppress them in the command.

alter-graph -v 1 -i complexes_rm_00_ad_00.tab \
-rm_edges 10% -add_edges 10% \
| cut -f 1,2 | grep -v 'y > complexes_rm_10_ad_10.tab

Re-use this command, but modify the percentage of removed édges 50%) and
added edges (-add_edges 100%). Save the resulting fileavitbeomplexes_rm_50 ad_100.tab

Network randomization
1. Use the following commands to randomize the graph by shgfthe edges. The node
degrees will be conserved.

random-graph -v 1 -i complexes_rm_00_ad_00.tab \
-random_type node_degree \
| cut -f 1,2 | grep -v ;7 > complexes_rm_00_ad_00_random.ta b

Networks clustering and clustering assessment

1. Use the following commands to apply MCL on the network

mcl complexes_rm_00_ad_00.tab \
--abc -1 1.8 -0 complexes_rm_00_ad_00_clusters.mcl

2. Convert the cluster file obtained with MCL with the prograamvert-classesnto a file
that is readable by NeAT / RSAT (two column cluster file).
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convert-classes -i complexes_rm_00_ad 00_clusters.mcl
-from mcl -to tab -0 complexes rm_00_ad 00_clusters.tab

3. Compare the obtained clusters to the MIPS complexes wéhptbgramcompare-

classes
compare-classes -q complexes_rm_00 ad 00 clusters.tab \
-r mips_complexes.tab \
-matrix QR \
-0 complexes_rm_00_ad_00_clusters_cc_complexes_matri x.tab

4. Study the obtained matrix with tlentingency-statsprogram

contingency-stats -i complexes_rm_00_ad_00_clusters_c c_complexes_matrix.tab \
-0 contigency_stats_ad_00_rm_00.tab

Repeat these steps feaomplexes_rm_10_ad_10.tatomplexes_rm_50_ad_100.tand
complexes_rm_00_ad_00_random.tad save the resulting files under the namcesti-
gency stats _ad 10 _rm_10.tabntigency _stats_ad 50 rm_100,tadntigency_stats ad _00_rm_0O
respectively.

6.2.4 Interpretation of the results

We will now compare the performances of MCL when applied tomoegts containing an
increasing proportion of noise or no signal at all.

Files description

Randomized network  As the real MIPS complexes network, this randomized network
contains 12262 edges between 1095 nodes. With our parantetiee, no edge should be
duplicated. However, as imndom-graph the iterative process designed to avoid duplicated
edges may not be totally efficient, some duplicated edgessulagist in the randomized net-
work.

Altered networks  This file is a classical NeAT tab-delimited edge list. Howeveere is
a fifth column that indicates whether the edge comes fromtigenal graph ¢riginal) or was
added randomlyrandonj.

» As the MIPS complex newtwork, the network with 10% of added eemoved edges
contains 12262 edges between 1095 nodes, which is logice¢ asmoved and added
the same number of edge (in this case 1226).

* The network with 100% of added edges (+ 12262 edges) and 50éoved edges (-
6131 edges) contains 18393 edges between 1095 nodes. dpisgntains thus more
noisy than relevant edges.
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Contingency table  See the previous chapter (Graph clustering) for a competergption
of a contigency table.

Contingency table metrics A list of metrics and their value. These will be described in
the next section.

Metrics description

Sensitivity, Positive predictive value and geometric accur acy See the previous
chapter (Graph clustering) for a complete description ajratigency table.

Score comparaison

The table summarizes the kind of values that should be aador the metrics described in
the previous section. As the alteration and the randonoizgtitocedure are random processes,
you should not obtain exactly the same results.

# true adl10/rm10 | ad100/rm50| random
ncol 125 114 713 361
nrow 220 220 220 220
mean 0.0569| 0.0624 0.00998 0.0197
Sn 0.998 | 0.985 0.418 0.291
PPV 0.884 | 0.836 0.867 0.459
acc 0.941 | 0.91 0.642 0.375
acc_g 0.939 | 0.907 0.602 0.365
Sn_w 0.997 | 0.992 0.502 0.157
PPV_w | 0.621 | 0.62 0.688 0.244
acc_g w| 0.787 | 0.785 0.588 0.196
sep_r 0.567 | 0.507 0.676 0.192
sep_c 0.998 | 0.979 0.208 0.117
sep 0.752 | 0.704 0.375 0.15

As expected, the value of the global parameters, the gemnagituracy (row acc_g), the
weighted geometric accuracy (row acc_g_w) and the separ@tw sep) decrease drastically
as the network contain less and less relevant information.

We can observe that the sensitivity is more affected thaRBMand that the complex wise
separation (sep_r) is more affected than the cluster wgaragon. This is due to the fact that
by increasing the noise, MCL increases the number of smatsitiusters (ncol) too and, as
we saw in previous section, this has an impact on the seibgitiv

Note that with a random graph, we would have a separation1& But an unweighted
geometric accuracy of 0.365 which is far from being 0. Thatretly good performances of
MCL on the highly altered graph must thus be taken with cawa®the gain in performances
is only of 23%. This illustrates the interest of using negationtrols.
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7 Path finding

7.1 Introduction

Given a biological network and two nodes of interest, the airk shortest path finding is to
enumerate the requested number of shortest paths corméutise nodes ordered according
to their weight. For instance, we might look for all shortpaths between a receptor and a
DNA binding protein to predict a signal transduction patiiviam a protein protein interac-
tion network. Another example is the prediction of a metabpathway given two reactions
or compounds of interest and a metabolic network.

A problem encountered in many biological networks is thespnee of so-called hub nodes,
that is nodes with a large number of connections. For exampleacterial protein-protein
interaction networks, CRP has the role of a hub node becausteiticts with many targets.
Likewise, in metabolic networks, compounds such as ADP demare hubs, since they are
generated and consumed by thousands of reactions.

The shortest path very likely traverses the hub nodes of wankt It depends on the bio-
logical context, whether this behaviour is desired or notmietabolic networks, we are less
interested in paths going through water or ADP, since thasiespare often not biological rel-
evant. For instance, we can bypass the glycolysis pathwayobgecting glucose via ADP
to 3-Phosphoglycerate. To avoid finding irrelevant patrsMase this one, we tested differ-
ent strategies and concluded that using a weighted netwark the best result®],[?]. In

a weighted network, not the shortest, but the lightest patbsearched. Hub nodes receive
large weights, making them less likely to appear in a satupath.

Whether weights are used and how they are set has to be de@dedding on the biological
network of interest.

In this chapter, we will demonstrate path finding on the exengh metabolic networks.
We will work on a network assembled from all metabolic patiisvannotated for the yeast
S. cerevisiaén BioCyc (Release 10.6?]. We will also show the influence of the weighting
scheme on path finding results.

7.2 Computing the k shortest paths in weighted
networks

7.2.1 Study case

The yeast network constructed from BioCyc data consists @5lnbdes and 2,656 edges. It
has been obtained by unifying 171 metabolic pathways. Nwethis network is bipartite,
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which means that it is made up of two different node typesctreas and compounds. An

edge never connects two nodes of the same type. For thealytee choose to represent
the metabolic data as undirected network. Note that higbeuracies can be achieved by
representing metabolic data by directed networks thatawohbr each reaction its direct and
reverse direction, which are treated as mutually exclustee the advanced options of the
Pathfinder tool for mutual exclusion of reactions in direateetabolic networks.

We will recover the heme biosynthesis Il pathway given igstsind end compound, namely
glycine and protoheme. First, we will use the "degree" weighscheme, which penalizes
hub nodes. Second, we will infer the path using the "unit” Wweig scheme and compare the
results.

7.2.2 Protocol for the web server

1. IntheNeATmenu, select the commalkdshortest path finding.
In the right panel, you should now see a form entitled “Pattdit

2. Click on the buttorDEMOL
The form is now filled with the BioCyc demo network, and the pagters have been
set up to their appropriate value for the demonstration hattop of the form, you can
read some information about the goal of the demo, and thesairthe data.

3. Click on the buttorGO.
The computation should take no more than two minutes. Whenfimished, a link to
the results should appear.

4. Click on the link to see the full result file.

It lists a table of all paths found for the requested rank nem{b by default). You can
also specify another type of output, for instance a netwaaklenup of all paths found.
Vary the paramete®utput typefor this.

To see how results change with modified weight, you can regptegs 1 and 2. Before
clicking on GO, choose “unit weight” asVeighting schemeand set theRankto 1. Continue
as described above. You will obtain another paths table blefore.

7.2.3 Protocol for the command-line tools

This section assumes that you have installed the RSAT/NeAintand line tools.

You can find the demo network Scer_biocyc.tab in $RSAT/publiml/demo _files.
Type the following command to enumerate paths up to the bikirethe weighted network:

java -Xmx800m graphtools.algorithms.Pathfinder -g Scer_ biocyc.tab -f tab -s gly -t protoheme
To find paths in the unweighted network, type:
java -Xmx800m graphtools.algorithms.Pathfinder -g Scer_ biocyc.tab -f tab -s gly -t protoheme
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7.2.4 Interpretation of the results
Degree weighting scheme

First, we run Pathfinder with degree weighting scheme, wisitihe default weighting scheme
of the demo. This weighting scheme sets the weights of comgphaodes to their degree and
of reaction nodes to one. The first ranked path obtained dHook like this:

GLY 5-AMINOLEVULINIC-ACID-SYNTHASE-RXN 5-AMINO-LEVULINATE PO RPHOBILSY
RXN PORPHOBILINOGEN OHMETHYLBILANESYN-RXN HYDROXYMETHYLBILANE
UROGENIISYN-RXN UROPORPHYRINOGEN-1Il UROGENDECARBOX-RXN COPRO
PORPHYRINOGEN_IIIRXN0-1461 PROTOPORPHYRINOGEN PROTOPORGEMNBXN
PROTOPORPHYRIN_IX PROTOHEMEFERROCHELAT-RXRROTOHEME

This path recovers very well the annotated heme biosyrghigsathway.

Unit weighting scheme

We repeated path finding on the same network but used the aighting scheme, which sets
all node weights to one. This is equivalent to path findingnnuaweighted network. We
obtain a large number of paths of first rank, among them thés on

GLY GLUTATHIONE-SYN-RXN ADP PEPDEPHOS-RXN PROTON PROTOHEMEFEBEHEL
RXN PROTOHEME

This path deviates strongly from the heme biosynthesisthyay annotated in BioCyc. It
contains two hub nodes: ADP and PROTON.

7.3 Summary

To sum up: path finding can predict pathways with high acguifaen appropriate weighting

scheme is applied to the network of interest. Our metabolesrple shows that the heme
biosynthesis Il pathway is accurately predicted when uaingighted network and not found
at all when using an unweighted network. The take home mesisatipat in order to use

Pathfinder on biological networks, weights have to be céyedajusted.

7.4 Strengths and Weaknesses of the approach

7.4.1 Strengths

The strength of the approach is that for a given network amicgpiate weighting scheme,
pathways can be discovered with high accuracy. These pgthway be known or novel path-
ways. Other methods such as pathway mapping are unableoiereantirely novel pathways
or pathways which are combinations of known pathways.
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7.4.2 Weaknesses

The weakness is that the weighting scheme has to be optirffozdide biological network of
interest.

7.5 Troubleshooting

1. No path could be found.

Make sure that your start and end nodes are present in youoriedf interest. If no
path could be found, none of the end nodes is reachable freratéint nodes, thus no
path exists. For big graphs and long waiting time, there espbssibility that the pre-
processing step of REA, namely to compute the shortest paihsthe source to all
nodes with Dijkstra, was not finished before the server timedn this case, a path
might exist but could not be detected due to the timeout.

2. An out of memory error occurred.

When searching for paths with the "unit" weighting scheme mdanetworks, there
might be a large number of possible paths for each requesitéd Although REA has
a memory-efficient way to store paths with pointers, ther lisnit for the number of
paths that can be hold in memory. Reduce the number of reguesaties or the size of
the graph or use another weighting scheme.
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8 Metabolic path finding

8.1 Introduction

The metabolic pathfinder enumerates metabolic pathwaygeleta set of start nodes and a
set of end nodes, where start and end nodes may be compoeacsomns or enzymes (which
are mapped to the reactions they catalyze). When choosinggtiteparameters (which are
set by default), the metabolic pathways found are with higlbability biochemically relevant.

The accuracy of path finding in metabolic networks (as in okhe@ogical networks) is di-
minished by the presence of hub nodes (highly connected congs such as ATP, NADPH
or CO2) in the network. Path finding algorithms will traverbe hetwork preferentially via
the hub nodes, thereby inferring biochemically irreleyaaihways. Different strategies have
been devised to overcome this problem. Arita introducediheping and tracing of atoms
from substrates to productg][ This strategy is also applied in the Pathway Hunter Toallav
able at http://pht.tu-bs.de/PHT/. Other tools rely onsuteavoid hub nodes, e.g. the pathway
prediction system at UMBBD (http://umbbd.msi.umn.edu/p#d Didier Croes et al. used
weighted graphs to avoid highly connected nod&dg?]. The functionality of Didier Croes’
tool is covered by the metabolic pathfinder (with the weidsaction network).

Metabolic pathfinder relies on a mixed strategy: On the ome hiamakes use of weighted
graphs to avoid irrelevant hub nodes and on the other hantegrates KEGG RPAIR an-
notation [?] to favor for each traversed reaction main over side comgsutKEGG RPAIR
is a database that divides reactions into reactant paibsise-product pairs) and classifies
the reactant pairs according to their role in the reactiar.ifstance, the cofac reactant pair
A00001 couples NADP+ with NADPH. Main reactant pairs cortneain compounds and
should be traversed preferentially by path finding algongh

The KEGG RPAIR annotation is integrated by construction efdihdirected RPAIR net-
work, which consists of 7,058 reactant pairs, 4,297 comgswand 14,116 edges for KEGG
version 41.0. Alternatively, two other networks are ava#a the directed reaction network
evaluated inP] and an undirected reaction-specific RPAIR network, in wigabh reaction is
divided in its reactant pairs.

Note that in more recent KEGG versions, identifiers of restgbairs start with RP instead
of A.

In this chapter, we will recover the aldosterone pathwapgihe RPAIR and the reaction
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network respectively. Note that the study case was cartedivh data from KEGG LIGAND
version 41.0. Results might differ for more recent KEGG \aarsi

8.2 Enumerating metabolic pathways between
compounds, reactions or enzymes

8.2.1 Study case

Aldosterone is a human steroid hormone involved in the aggri of ion uptake in the kidney
and of blood pressure. It is synthesized from progesteidieeaim to recover the aldosterone
biosynthesis pathway by providing its start and end reactio

8.2.2 Protocol for the web server

1. In theNeATmenu, select the entietabolic path finding.
In the right panel, you should now see a form entitled “Metalqmathfinder”.

2. Click on the buttorDEMOZ2 located at the bottom of the form.
The metabolic pathfinder form is now filled with the start and eeaction of the aldos-
terone biosynthesis pathway. In addition, informationiaa pathway is displayed.

3. Click on the buttorGO.

4. The seed node selection table appears.

This table lists for each reaction the reactant pair idem{g) associated to it. Note that
reaction R02724 is associated to two reactant pairs.

The seed node selection form allows you to select the coamcing all compounds
matching your query string in case you provided a partialpoumd name. If you give
KEGG compound identifiers, it displays the name of each camgoFor EC numbers,
it lists associated reactions or reactant pairs. The sedd selection form also warns
you in case you provide problematic identifiers.

5. Click on the buttorGO.

The computation should take no more than one minute.

Then, a table is displayed, which lists the found paths irotider of their weight. The
table may be sorted according to other criteria by clickimgrespective column header.
Each path node is linked to its corresponding KEGG entry &syenspection of results.

If you set Output formatin the metabolic pathfinder form to “Graph”, you obtain an
image of the inferred pathway generated by the progiatrof the graphviz tool suite
and a link to the pathway in the selected graph format.
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To see how results change with the choice of the graph, youegaat steps 1 and 2. In the
metabolic path finding form, select Reaction graph insted®IREIR graph (which is selected
by default) and follow step 3 to 5. You will notice in the seeatle selection form that the
reaction identifiers are no longer mapped to reactant pairs.

8.2.3 Protocol for the command-line tools

This section assumes that you have installed the RSAT/NeAintand line tools.

The metabolic pathfinder is a web application on top of PatlefinYou may run metabolic
path finding on command line by launching the Pathfinder conahtiae tool on the RPAIR
and reaction networks, which are provided in the KEGG graplository reachable from the

metabolic pathfinder manual page.
Type the following command in one line to find paths in the RPAHBRwork:

java -Xmx800m graphtools.algorithms.Pathfinder -g RPAIR Graph_allRPAIRs_undirected.txt
-s 'A02437' -t 'A02894’ -b -y rpairs

To repeat path finding in the reaction network, type in one:lin

java -Xmx800m graphtools.algorithms.Pathfinder -g React ionGraph_directed.txt -d -f
-s 'R02724>/R02724<’ -t 'R03263>/R03263<’ -b -y con

8.2.4 Interpretation of the results
Metabolic path finding in the RPAIR network

The path of first rank does not reproduce exactly the anrbfzdéhway. Instead, it suggests
a deviation via 21-hydroxypregnelonone, bypassing pttegese. This path might be a valid
alternative, as it appears on the KEGG map for C21-Steroichbpne metabolism in human.
One of the two second-ranked paths corresponds to the aed@athway.

First ranked path:
A02437 (1.14.15.6Pregnenolone A03407 (1.14.99.10) 21-Hydroxypregnereoldf0731
(1.1.1.145,5.3.3.1) 11-Deoxycorticosterone A0346941.3.4) Corticosterone A02893 (1.14.15.5)
18-Hydroxycorticosteron802894

Second ranked paths:
A02437 (1.14.15.6Pregnenolone A00386 (1.1.1.145, 5.3.3.1) Progestero864%(1.14.99.10)
11-Deoxycorticosterone A03469 (1.14.15.4) Corticosterdf2893 (1.14.15.5) 18-Hydroxycorticost
A02894

A02437 (1.14.15.6lPregnenolone A0O0386 (1.1.1.145, 5.3.3.1) Progestero@840(1.14.15.4)

11beta-Hydroxyprogesterone A03467 (1.14.99.10) Cotiizose A02893 (1.14.15.5) 18-
Hydroxycorticosteroné&02894
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Metabolic path finding in the reaction network

The paths of first and second rank traverse a side compoumelyadrenal ferredoxin. None
of these paths is therefore biochemically valid. In the \w&g reaction graph all highly
connected side compounds such as ATP and water are avoid&cevelr, adrenal ferredoxin
is a rare side compound, thus weighting is not sufficient {zalssg it.

First ranked path:
R02724< Reduced adrenal ferredoxin R032628-HydroxycorticosteronR03263>

Second ranked paths:

R02724> Oxidized adrenal ferredoxin R02726Reduced adrenal ferredoxin R03262
18-HydroxycorticosteronR03263>

R02724> Oxidized adrenal ferredoxin R02725Reduced adrenal ferredoxin R03262
18-HydroxycorticosteronR03263>

8.3 Summary
Metabolic path finder provides k shortest path finding in rnelia networks constructed from
KEGG LIGAND and KEGG RPAIR. The metabolic path finder is coupkath a mirror of

the KEGG database to allow quick identification of partiainpmund names and to annotate
results.

8.4 Strengths and Weaknesses of the approach

8.4.1 Strengths

The metabolic path finder has the following benefits comptaryedher metabolic path finding
tools:

1. It has been extensively evaluated on 55 reference pathir@y three organisms.
2. It supports compounds, reactions, reactant pairs anduthers as seed nodes.

3. It can handle sets of start and end nodes.

8.4.2 Weaknesses

The metabolic path finding tool has the following weaknesses

1. RPAIR does not cover all compounds in KEGG. Thus, the RPAIR o is less com-
prehensive than the reaction network.
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2.

3.

By default, the metabolic path finder cannot infer dirawiof reactions in pathways
because of the way the networks were constructed (beingagated or treating all re-
actions as reversible). However, custom metabolic netsvarky contain irreversible
reactions and it is therefore possible to infer directetiways from custom networks.

The metabolic path finder can only partly infer cyclic pedlys or pathways in which
the same enzymes act repeatedly on a growing chain.

8.5 Troubleshooting

1.
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A Parameter error occurred.

By default, the optimal parameter values are set. Howevgagufset your own values,
they might not be in the supported value range. Check the M&tgtath finder manual.

The seed node selection form displays the message: "Yoidpobinvalid identifier(s)!"

This occurs when you provide identifiers that do not match KBGG identifier, EC
number or KEGG compound name. Check your identifiers or in gaseprovided a
compound name, check whether the compound is present in KEGG

. The seed node selection form displays the message: "Tée gompound is not part of

the sub-reaction graph.”

As stated in the Weaknesses section, the RPAIR network ddesontain all KEGG
compounds due to incomplete coverage of the RPAIR databagéo $earch paths for
this compound in the reaction network.

. No path could be found.

This may happen in the RPAIR network because in this netwarttaat pairs belonging
to the same reaction exclude each other. Try the reactiecHgpRPAIR network or the
reaction network instead.

. An out of memory error occurred.

This may occur when requesting a large number of paths wéhrélactant subreac-
tion and compound weighting schemes set to unweighted. Hargé when setting the
weighting schemes to unweighted, biochemically irreléyeaths will be returned. Use
another weighting scheme or reduce the number of requeatbd  avoid this error.



9 KEGG network provider

9.1 Introduction

KEGG network provider allows you to extract metabolic natkgofrom KEGG [?] that are
specific to a set of organisms. In addition, you can exclud&itecompounds or reactions
from these networks.

A range of tools works with KGML files. Click on “Manual -> Relat¢ools” to see a
selection of them. KEGG network provider differs from theéeels by allowing also the
extraction of RPAIR networks and by supporting filtering ofrqgmounds, reactions and RPAIR
classes.

KEGG network provider itself has no network analysis or gl&ation functions, but you
can use a NeAT tool (a choice of them will appear upon terrmonaif network construction)
or any other graph analysis tool that reads gml, VisML or dotrfat for these purposes.

For visualization of KEGG networks, you can use iPATH KGML-ED [ ?] or metaSHARK
[?]. Yanasquare] and Pathway Hunter TooP] offer organism-specific KEGG network con-
struction in combination with analysis functions. Wiff},[you can construct KEGG metabolic
networks in R.

It should be noted that KEGG annotators omitted side comgi®imthe KGML files. Thus,
certain molecules (such as CO2, ATP or ADP) might be absent fhe metabolic networks
extracted from these files.

It is also worth noting that constructing metabolic netweofkom KGML files produces
networks of much lower quality than those obtained by mamethbolic reconstruction. In
manual reconstruction, several resources are taken intuat, such as the biochemical liter-
ature, databases and genome annotations (§)g.This is why the metabolism of only a few
organisms has been manually reconstructed so far.

In automatically reconstructed networks, reactions migiitbe balanced and compounds
might occur more than once with different identifiers (sep §] for annotation problems in
KEGG). For the purpose of path finding the automatically nstaucted metabolic networks
may still be of interest.
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9.2 Construction of yeast and E. coli metabolic
networks

9.2.1 Study case

Our study case consists in the construction of two metabaigvorks: one for five yeast
species and the other fRischerichia coli K-12 MG1653/Ne will compare path finding results
obtained for these two networks for a metabolic referentleviay (Lysine biosynthesis).

9.2.2 Protocol for the web server

1. IntheNeATmenu, select the entfyownload organism-specific networks from KEGG
In the right panel, you should now see a form entitled “KEG®waoek provider”.

2. Click on the buttorDEMO located at the bottom of the form.

The KEGG network provider form has now loaded the organisntifiers of five yeast
species. As explained in the form, the species concernedaceharomyces bayanus
Saccharomyces mikataBaccharomyces paradoxuschizosaccharomyces ponmdosd
Saccharomyces cerevisiae

3. Click the checkboxirected networko construct a directed metabolic network.

4. Click on the buttorGO.

The network extraction should take only a few seconds. Thdimk to the extracted
network is displayed. In addition (for formatab-delimitedand gml), the Next step
panel should appear.

5. Click on the button “Find metabolic paths in this graph” lre tNext step panel. This
button opens the Metabolic pathfinder with the yeast netyoekioaded.

6. Enter C00049 (L-Aspartate) as source node and C00047 (ind)as target node.

7. In sectionPath finding options, set the rank to 1. We are only interested in the first
rank.

8. In sectiorOutput, selectGraphas output with “paths unified into one graph”
9. Click GO. The seed node selection form appears to confirm our seedchodtz.

10. Click GO. After no more than one minute of computation, the graphyimgf first rank
paths between L-aspartate and L-lysine should appear. &ostore the graph image
on your machine for later comparison.

Repeat the previous steps, but instead of sele@B/O in the KEGG network provider
form, enter eco in the organisms text input field. Make surselectdirected networkn the
KEGG network provider form, then follow steps 4 to 10 as diésct above.
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9.2.3 Protocol for the command-line tools

The command-line version of this tutorial is restrictedteE. coliandS. cerevisiaenetabolic
networks. It is assumed that you have installed the requioetdmand-line tools.

1. First we construct the directed metabolic networleotoli.

java graphtools.util.MetabolicGraphProvider -i eco -d
-0 eco_metabolic_network_directed.txt

2. Then, we search for the lightest paths in this network baws:

java graphtools.algorithms.Pathfinder
-g eco_metabolic_network directed.txt
-f tab -s C00049 -t C00047
-r 1 -d -y con -b -T pathsUnion -O gml
-0 lysinebiosyn_eco.gmi

3. To visualize the inferred pathway, you may open lysingyamo eco.gml in Cytoscape or
in yED.

4. We proceed by constructing the metabolic networE oferevisiae

java graphtools.util.MetabolicGraphProvider
-i sce -d -0 sce_metabolic_network_directed.txt

5. Then, we enumerate paths between L-aspartate and lelysih

java graphtools.algorithms.Pathfinder
-g sce_metabolic_network_directed.txt
-f tab -s C00049
-t C00047 -d -r 1 -y con -b -T pathsUnion -O gml
-0 lysinebiosyn_sce.gmi

6. As before, we can visualize the lysinebiosyn_sce.gmitile graph editor capable of
reading gml files (such as yED or Cytoscape).

9.2.4 Interpretation of the results

After having executed the steps of this tutorial, you shdwade obtained two pathway images:
one for the yeast network and one for thecoli network. Both pathways differ quite substan-
tially. If we compare each of these pathways with the respecarganism-specific pathway
map in KEGG, we notice that the pathway inferred for Bhecoli network reproduces the
reference pathway correctly.

The yeast pathway deviates from tBecerevisia)KEGG pathway map from L-aspartate to
but-1-ene-1,2,4-tricarboxylate, but recovers othenthgeereference pathway correctly (ignor-
ing the intermediate steps 5-adenyl-2-aminoadipate goithghminoadipoyl-S-acyl enzyme
associated to EC number 1.2.1.31).
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For comparison purposes, we have chosen the same start encbeypound for both
metabolic networks, but it should be noted that the referdgsine biosynthesis pathway
in S. cerevisiastarts from 2-oxoglutarate.

The lysine biosynthesis KEGG map for yeast is available at:

http://www.genome.ad.jp/dbget-bin/get_pathway?org_n ame=sce&mapno=00300

The one forE. coliis available at:

http://www.genome.ad.jp/dbget-bin/get_pathway?org_n ame=eco&mapno=00300
9.3 Summary

The study case demonstrated that different organisms majogrdifferent metabolic path-
ways for the synthesis or degradation of a given compoundthi®reason, it is useful to be
able to construct metabolic networks that are specific tdetexl set of organisms.

9.4 Troubleshooting

1. An empty graph (with zero nodes and edges) is returned.eMake that the entered
organism identifiers are valid in KEGG. They should consisthoee to four letters
only. If in doubt, check in the provided KEGG organism list.
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10 Pathway inference

10.1 Introduction

The idea of pathway inference is to connect a given set of sedds in the network and
thereby extracting a sub-network that is optimal accordongertain criteria (e.g. minimal
weight or maximal relevance).

In the context of biological networks, the goal is to obtawalid pathway for a set of biologi-
cal entities of interest, e.g. genes from microarray datoorpounds from metabolomic data.
For instance, genes whose products participate in the sagtebolic pathway are often co-
expressed or grouped together in operons or regulons. Weérynayreconstruct this metabolic
pathway by associating the gene products to relevant ceacéind connecting these reactions
in a metabolic network. The resulting sub-network may be@knmetabolic pathway or an
unknown pathway consisting of known pathways or known reastand compounds. In the
context of microarray data, pathway inference from a sebeéxpressed genes may predict
which pathways are up- or down-regulated.

10.2 Inferring a pathway for a set of co-expressed
genes

As an example, we take the case study discussed@]inlp this case study, a pathway is
assembled from genes in the cell-cycle regulated MET aly8}e Results described in this
tutorial have been obtained with KEGG RPAIR version 49.0.

10.2.1 Protocol for the web server

1. In theNeATmenu, select the entiyathwayinference

2. Copy-paste the gene names below in the seed nodes text field:
Met3
Metl14
Metl6
Met5
Met10
Metl17
Met6
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3. Select "Genes/Enzymes" as identifier type.

4. In the text field "Genes are from organism” type sce, the KEBRreviation forSac-
charomyces cerevisiae

5. Push thesO button.

The result of the mapping of the given genes to KEGG RPAIRS {aeapairs, P]) is dis-
played. Since more than one reactant pair is associateahogese, we end up with a group
of reactant pair groups. Note that each gene (except for Met@ssociated to one or more
EC numbers, each of which has been mapped to its corresgpretiotions in KEGG, which
have in turn be mapped to their corresponding reactant.pairs

You can now select how to deal with the groups. This is a seasihoice that strongly
affects the inferred pathway and which depends on your datayeneral, if you keep the
original groups, you assume implicitely that only a subgehe reactions associated to the
given gene will be active in the pathway. If you think thatr@éctions associated to a gene
might be active, choose "Treat each group member as a segeoafe (the default treatment).

For the study case, we recommend you to keep the default.

PushGO. In a few minutes, the result page will be displayed.

10.2.2 Protocol for the command-line tools

This section assumes that you have installed the RSAT/NeAlnhtand line tools.
Pathwayinference is a web application that calls the pagmiexrence web service. You
can use the Pathwayinference command line tool on the netwoovided in the network
repository (check the Pathwayinference Manual for thisjefaroduce results obtained with
the web application on command line. Note that the mappirgeaoks to reactions and group

treatment can only be done via the web application.
Type the following command in one line:

java -Xmx800m graphtools.algorithms.Pathwayinference - g RPAIRGraph_allRPAIRs_undirected
-s 'RP0O0016#RP00182/RP00647/RP00561/RP00143#RP00960# RP04049/RP00096#RP00168#
RP04532/RP00003/RP00446/RP00946#RP00857/RP04474/RPO  0050#RP04533'
-f flat -b -y con -P -u -x 0.05

10.2.3 Interpretation of the results

The resulting sub-network contains a large part of the payhgiven in [?]. Note that the
chosen algorithm (kWalks in combination with Takahashi &Mgama) may return one from
a set of solutions, so your solution may deviate from the aszdbed here. Despite of this
disadvantage, Takahashi & Matsuyama in combination witlalké/is the default algorithm,
because it performed best in our evaluation. If your reseMiates from the one described
below, repeat the inference with the algorithm "repetitiveARE
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The pathway described in the study case unites the sulfum@etson and methionine
biosynthesis pathways. It consists of the following steps:
Sulfate 2.7.7.4 Adenylyl sulfate 2.7.1.25 3’'phosphoadidsylfate 1.8.99.4 sulfite 1.8.1.2 sul-
fide (alias hydrogen sulfide) 4.2.99.10 Homocysteine 214.L-Methionine

The matching parts of the inferred pathway are:

RP000163’-Phosphoadenylyl sulfateP00446Adenylyl sulfateRP00960
and
RP00960Sulfite RP00168Hydrogen sulfide RP01406 L-HomocysteiRP00096
Seeds are printed in bold.
In addition, the inferred pathway contains a branch thatdéeom 3’-Phosphoadenylylselenate
to Adenylylselenate. This branch mirrors sulfur incorgimna, but instead of sulfur, selenium
is incorporated.

The presence of both the selenium and sulfur incorporatathvpays in the inferred sub-
network reflects the well-known fact that selenium mightaep sulfur in metabolism.

This example demonstrated that given a set of differegtebressed genes from micro-
array data and a metabolic network, it is possible to inferegafolic pathway that might be
affected by altered expression of the query genes.

10.3 Summary

Pathwayinference allows extraction of sub-networks frargér networks given a set of seed
nodes. The web application is tailored to metabolic netwdokit non-metabolic networks can
be processed as well.

10.4 Strengths and Weaknesses of the approach

10.4.1 Strengths

1. Sub-network extraction can be applied to any biologieavork.
2. It can discover unknown pathways consisting of known comepnts.

3. It can be fine-tuned to favor certain nodes. For instamce global metabolic network,
reactions/compounds known to occur in certain species tmegleive a weight much
lower than other nodes, to favor extraction of speciesifipetib-networks.

4. Groups of seed nodes can be specified to reflect AND/ORawesdtiips between seeds.

5. The web application allows to infer metabolic pathwaysigtabolic networks extracted
from the two major metabolic databases KEGEHgnd MetaCyc P].
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6. For metabolic networks from MetaCyc or KEGG, the web apyion supports com-

pounds, reactions, reactant pairs, EC numbers or genefidentais seed nodes and
handles the required mapping of these seeds to reacti@tsant pairs and compounds.

7. For metabolic networks from MetaCyc or KEGG, the web apypion performs a map-

ping of the inferred sub-network to known pathways storedd@gc or KEGG respec-
tively.

8. Metabolic sub-network extraction has been validated brmétabolic pathways ex-

tracted from MetaCyc.

10.4.2 Weaknesses

1.

In general, the accuracy of pathway inference dependeeoguality of the given net-
work and the number of seeds available.

Spiral-shaped metabolic pathways such as fatty acidybibssis can only be partly
inferred.

In the densely connected region of metabolic networkdabudic pathway inference
cannot well distinguish alternative pathways without géanumber of seed nodes.

The algorithms are too time-consuming to estimate peshy computing a score dis-
tribution (where the score would be the sub-network weifgrtyandomly chosen seed
nodes on the fly. We envisage to pre-compute these distiimifior the pre-loaded
networks.

Only one sub-network is suggested. We envisage to conaplige of them ranked by
their weight.

10.5 Troubleshooting
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1. Pathwayinference parameter error.

You provided insufficient or invalid parameters. Pleaseckhthe pathwayinference
manual page.

. You did not specify enough valid seed node groups! Patmiergnce needs at least

two valid seed node groups.

For the pre-loaded metabolic networks from KEGG and Meta€sich seed is mapped
to data (e.g. compound/reaction identifiers, EC numbeos) fthese two databases. If
the seeds do not map anything, they are considered to bedindleast two valid seed
groups are needed to infer a network.

The node with identifier ID is not part of the input graph.
Make sure that your input network contains the node with thergidentifier.



4. Pathwayinference failed to extract a subgraph.
None of the seed node groups could be connected to any o#etnsele group. Each
might belong to a separate component of the input network wuah exclusion (in
RPAIR networks) might prevent the connection of the seedgou
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11 Recapitulative exercises
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